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Abstract

SPECIFICATION DIAGNOSTICS IN THE PRESENCE OF MULTIPLE 

MISSPECIFICATIONS FOR PARAMETRIC DURATION MODELS

Sanjiv Jaggia

Parametric models have been used widely in the analysis of 

duration data. The term duration data is used in the 

context of the duration of time until the occurrence of some 

event of interest. Such models have often been used in 

econometrics to explain why different people spend varying 

lengths of time in the state of unemployment. Also of 

interest has been the question of whether the probability of 

finding a job changes with the length of time a person is 

unemployed. Duration models are generally estimated using 

maximum likelihood methods. However, such estimates may be 

inconsistent in the presence of model misspecification. 

Consequently, it is desirable to have diagnostic tests that 

examine the validity of the distributional assumptions made 

in the parametric duration models.

This thesis is aimed primarily at identifying various 

sources of misspecification and developing tests for model 

evaluation. It is emphasised that the conventional approach 

of testing each parametric restriction in isolation is 

inconclusive when multiple misspecifications exist
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concurrently. Incorrect inferences may be drawn in such

situations, especially when separate tests are correlated.

The need to compute an omnibus statistic is stressed and

some joint tests of this form are developed. Such a

statistic tests all the relevant assumptions made within a

given model jointly and hence has power against several

forms of misspecification. Furthermore, modified separate

tests are developed that can provide the additional

information needed to pin-point the exact error, once the

joint null hypothesis is rejected. Finally, some

adjustments to standard tests, that are valid in the

presence of censored data as well, are suggested in this
*

thesis. An empirical application and extensive Monte Carlo 

evidence are provided as illustration for all the above 

mentioned tests.
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CHAPTER 1

INTRODUCTION

Parametric models have been used widely in the analysis of 

duration data. The term duration data is used in the 

context of the duration of time until the occurrence of an 

event. An example of the above is the duration of time 

spent by an individual in the state of unemployment.

However, distortions in the econometric results of such 

analyses that may be caused by an incorrectly parametrised 

model have led to a shift of emphasis from the estimation 

and interpretation of econometric results to the evaluation 

of such distortions and model testing. The main focus of 

many studies in econometrics has been the reasons for and 

the consequences of neglected (unobserved) heterogeneity in 

the data.1 Due to the inherently non-linear nature of 

duration models, parameter estimates may be highly biased if 

such heterogeneity is ignored. As a result, most of the 

diagnostic tests proposed have been tests of heterogeneity.2

In a different vein, Manton, Stallard and Vaupel (1986) show

1 see, for example, Salant (1977), Lancaster (1979, 1983, 
1985), Lancaster and Nickell (1980), Elbers and Ridder (1982), 
Heckman and Singer (1982, 1984a, 1984b).

2 see Lancaster (1983,1985), Lancaster and Chesher (1985a, 
1985b), Kiefer (1984, 1985, 1988), Burdett et al. (1985), 
Jensen (1987) and Sharma (1989).

1
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that model estimates may be very sensitive to the choice of 

hazard function.3 As a result, selecting an inappropriate 

parametric hazard function may be another significant source 

of specification error and may lead to biased estimates. 

Therefore, for a thorough model evaluation, one should test 

for the functional form specification of the hazard function 

along with any test of heterogeneity.

The following thesis is aimed primarily at identifying 

various sources of misspecification and testing for them in 

the context of duration models. Different specification 

diagnostics for parametric duration models are motivated and 

developed. The tests include tests of heterogeneity and 

functional form specification. It is emphasised that the 

conventional approach of testing each parametric restriction 

in isolation is inconclusive when multiple misspecifications 

exist concurrently. Incorrect inferences may be drawn in 

such situations, especially when separate tests are 

correlated. The need to compute an omnibus statistic is 

stressed and some joint tests of this form are developed. 

Such a statistic tests all the relevant assumptions made 

within a given model jointly and hence has power against 

several forms of misspecification. Furthermore, modified 

separate tests are developed that can provide the additional

3 see, also, Ridder and Verbaekel (1983) and Trussell and 
Richards (1985).

2
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information needed to pin-point the exact error, once the 

joint null hypothesis is rejected. Finally, some 

adjustments to standard tests, that are valid in the 

presence of censored data as well, are suggested in this 

thesis. An empirical application and extensive Monte Carlo 

evidence are provided as illustration for all the above 

mentioned tests.

In what follows, a summary of each chapter of the thesis is 

provided. Chapter 2 contains a brief review of some of the 

characteristic features of duration models and techniques 

for the parametric estimation of such models. The Weibull 

model is used for exposition. The causes and consequences 

of the problem of heterogeneity are considered. Some of the 

tests for neglected heterogeneity proposed in the literature 

are analysed. These tests include the informal graphical 

methods and the more formal tests that are based on 

parametric alternatives. It is shown that all the 

parametric tests examined basically amount to testing the 

same moment restriction of the generalised error.

A formal diagnostic statistic that is frequently used in 

testing is based on the integrated hazard function which is 

a generalised error in the sense of Cox and Snell (1968). 

Since the generalised error, so defined, has a unit 

exponential distribution when the model is correctly

3
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specified, testing its second moment restriction has formed 

the basis for model evaluation. Such a test has been 

interpreted as a score test for heterogeneity for a small 

variance of the heterogeneity term (Lancaster (1985), Kiefer 

(1984), Burdett et al (1985)). Chesher (1984) has shown 

that this test is the same as White's Information Matrix 

test with respect to the intercept, since neglected 

heterogeneity causes random variations in the intercept 

term.

In Chapter 3, it is pointed out that for the above-mentioned 

test to be a valid heterogeneity test, the hazard rate 

function has to be correctly specified. More generally, the 

use of a joint (simultaneous) test of all moment 

restrictions of the so defined generalised error is 

preferable to that of a test of the second moment only.

Such a test will be a general misspecification test rather 

than a test of heterogeneity per se. It is also noted that 

there is no unique way of defining a generalised error. Any 

non-linear function of the integrated hazard function can be 

interpreted as a generalised error in the sense of Cox and 

Snell. For example, if € is defined as the integrated 

hazard, then e1 = log(e) has a standard extreme value 

distribution with well defined moments. Similarly, one can 

define an infinite number of generalised errors that may be 

used for the diagnostic testing of the model. However,

4
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testing moment restrictions of all such errors will be 

especially meaningful only if an interpretation can be 

provided for a particular moment restriction, given that all 

the other restrictions are satisfied by the data.

Some of the easily understood moment restrictions of 

generalised errors are considered in this chapter. Some 

general specification tests are developed along with the 

heterogeneity test. Score tests of the functional form 

specification are developed within a fairly flexible 

generalised gamma distribution. All tests of 

misspecification are given the tests of conditional moment 

restriction interpretation. Using the Tauchen (1985) and 

Newey framework (1985), conditional moment restriction tests 

are expounded in a general setup. The moment restriction 

testing framework is used to develop diagnostics for the 

exponential and Weibull specifications. Kennan's (1985) 

strike data is used as an empirical illustration. It is 

inferred that the application of joint tests rather than 

separate tests is necessary in evaluating the specification 

of parametric models. It is shown that erroneous 

conclusions may be reached if separate tests are 

implemented, as in a number of previous analyses of Kennan's 

strike data.

A known problem in testing for more than one source of

5
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misspecification jointly is that the procedure is 

incomplete, as the rejection of a joint test is not 

sufficient to identify the exact source of misspecification. 

Some information from the separate tests of misspecification 

is necessary. As the standard separate tests are of little 

use when such tests are correlated, adjusted score tests, 

that may provide the additional information needed to pin­

point the exact error, are proposed in Chapter 4.

In conducting separate score tests on some given parametric 

restrictions, one typically assumes the validity of 

auxiliary restrictions on some nuisance parameters. This 

method can have misleading consequences if these auxiliary 

restrictions are not valid. Such restrictions translate 

into the assumption that the score vector with regard to the 

nuisance parameters is equal to zero. Instead of simply 

making this assumption, a test is proposed that is 

conditional on the realised value of the score vector with 

respect to the nuisance parameter. With this technique, the 

relevant score, corresponding to the parameters to be 

tested, is cleansed of its correlation with the score vector 

corresponding to the nuisance parameters.

The properties of the suggested adjusted test depend on the 

choice of the estimate of the nuisance parameter used to 

evaluate the scores. If any root-N consistent estimate of

6
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the nuisance parameter is used, the resulting test is robust 

and is the same as Neyman's C(a) test. This test is 

especially useful when it is difficult to obtain maximum 

likelihood estimates of the nuisance parameters. Based on 

the preliminary outcome of these tests, an applied 

researcher can determine if it is worthwhile to continue the 

study and estimate the model with maximum likelihood methods 

that ensure efficiency.

The second variant of the adjusted score test is relevant 

when the root-N consistent estimate of the nuisance 

parameter is also not available. Here, the scores at the 

restricted maximum likelihood estimator are evaluated such 

that the restrictions comprise both the auxiliary 

restrictions as well as the ones being tested. In other 

words, instead of estimating the nuisance parameter, 

auxiliary restrictions are placed on it. This test is valid 

only under the joint null, however, in this case, the 

standard separate tests will also be valid. Nevertheless, 

it has the merit of having been derived under a more general 

alternative and includes the adjustment factor for 

correlation between the scores, even though the adjustment 

is done under the restricted joint null. Therefore, even 

though both tests are based on the same joint null, the 

adjusted score tests will contain more information regarding 

the specific source of misspecification than the standard

7
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separate tests.

The above two renditions of the adjusted tests are developed 

to test for heterogeneity and duration dependence. The C(a) 

version of the test is based on the consistent estimates 

obtained from running an ordinary least square regression. 

Monte Carlo analyses of these tests along with the joint and 

standard separate tests are provided in this chapter.

A peculiar feature of duration models is that data on 

durations are seldom complete. It is common for some 

observations to be censored, typically right censored. In 

Chapter 5, modifications of diagnostic tests when the data 

consist of censored observations are considered.4 The test 

of heterogeneity is used as an example even though the 

suggested procedures can also be applied for other 

specification tests.

In order to implement a score test for heterogeneity, the 

theoretical information matrix, under the null, has to be 

evaluated. With censored observations, such a matrix cannot 

be derived without additional assumptions regarding the 

censoring mechanism. In this chapter, a distinction is made 

between data that are Type-1 censored and those that are

4 Horowitz and Neumann (1989), using Kennan's strike data, 
show that the testing procedures may lead to erroneous 
conclusions when data consist of censored observations.

8
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not. With Type-1 censored data, a heterogeneity test based 

on the theoretical information matrix is derived although it 

involves evaluating some expressions numerically. A method 

is suggested that uses only uncensored observations to 

implement this test when data are not Type-1 censored but 

are assumed to be censored randomly, involving no length- 

biased censoring. The method consists of first estimating 

the parameters of the model using all observations and then 

using these consistent and efficient estimates to evaluate 

scores consisting only of complete observations. It is 

assumed that the fact that an observation is complete has no 

influence on the duration of the random variable.

Monte carlo analyses of the above tests are carried out in 

this chapter. Also considered in this chapter are tests 

based on the observed information matrix. Two candidates 

considered for this matrix are the sample hessian of the 

log-1ikelihood function and the outer product of the sample 

scores. It is found that the performance of the tests based 

on the observed information matrix is case sensitive. The 

information matrix based on the sample hessian is not always 

positive definite, a phenomenon that makes the test 

meaningless. Tests based on the outer product of the sample 

scores are easy to implement but the nominal size of these 

tests is different from the actual size. The number of 

times that the test is rejected when the model is correctly

9
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specified, is more than the chosen level of significance for 

many of the Monte Carlo experiments conducted in the 

chapter. However, with Type-1 censored data, such tests 

seem to perform reasonably well. The relative performance 

of a test based on Kiefer's method for approximating the 

standard error of the relevant score is also examined.

Finally, Chapter 6 contains a summary of the results of this 

thesis and concluding remarks.

10



www.manaraa.com

CHAPTER 2

RELEVANT LITERATURE REVIEW WITH SPECIAL EMPHASI8 
ON SPECIFICATION TESTING

2.1 introduction
Parametric models have been used widely in the analysis of 

duration data. The term duration data is used in the 

context of measuring the duration of time until some event 

of interest. In econometrics, duration models have been 

used to study labor market transitions using the data on 

duration of unemployment spells of individuals. Such models 

have been especially utilised to explain why different 

people spend varying lengths of time in the state of 

unemployment. Also of interest has been the question of 

whether the probability of finding a job changes with the 

length of time a person is unemployed. The modelling 

process is typically initiated by specifying a family of 

duration distributions, up to a finite number of parameters, 

to be used for reduced form estimation of the model.

In Section 2.2, characteristic features of duration models, 

including some definitions, are analysed. Throughout this 

exposition, unemployment is used purely as an example to

11
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describe the modelling process.1 As the major emphasis of 

this thesis is on testing for parametric restrictions, some 

existing testing procedures based on residuals are surveyed. 

Residuals have often been used to evaluate the parametric 

restrictions on a given model. However, unlike in linear 

regression models, there is no natural choice for these 

residuals in, generally non-linear, duration models. In 

this section, generalised errors and residuals are defined 

that may be used for specification testing.

Section 2.3 contains a discussion of the problem of 

neglected heterogeneity caused primarily by omitted 

regressors. It is shown that parameter estimates may be 

biased if such heterogeneity is ignored. Testing procedures 

for model misspecification, with emphasis on neglected 

heterogeneity, are considered in Section 2.4. Informal 

graphical methods are suggested that may be used to evaluate 

model specification. More formal parametric tests for 

neglected heterogeneity are also discussed. It is shown 

that all such parametric tests are based on the generalised 

residuals defined in Section 2.2. These tests amount to 

testing for the second moment restriction of the generalised 

errors and are, thus, interpreted as tests for conditional 

moment restrictions.

1 Kiefer (1988) provides a survey and various applications of 
duration models in economics.

12



www.manaraa.com

2.2 Overview

2.2.1 Definitions

In duration models, it is customary to specify the 

parametric form of the model in terms of its hazard 

function. This function specifies the instantaneous rate of 

escape from the state of unemployment at time t, given that 

the individual was unemployed up until t. The hazard 
function, h(t), is defined as:

h(t) = lim Pr(t < T < t+6t | T > t)
St—>0

St

= f(t) = f(t)
    (2 .2 .1)
1 - F (t ) S(t)

where f(t) is the probability density function and F(t) is 

the distribution function of the random variable, T, which 

denotes duration of unemployment. S(t) = 1 - F(t) is called 

the survivor function. Other names for the hazard function 

found in the literature are "force of mortality" and 

"failure rate".

Since h(t) = - (d/dt) log S(t), the density and survivor 

functions can be written in terms of the hazard function as

1 - F (t ) = S (T) = exp(-f h(s)ds) and: (2 .2 .2)

13



www.manaraa.com

f(t) = h (t )exp(- h(s)ds) = h(t)exp(-fi(t)) (2.2.3)

n(t, - j h(s)ds is the integrated hazard function. (2.2.4)

Even though the functions h(t), f(t), F(t) and S(t) provide

mathematically equivalent definitions for the distribution 

of T, some interesting properties of the data, such as 

duration dependence, are most easily interpreted in terms of 

the hazard function. Duration dependence is said to exist 
when (d/dt)h(t) does not equal 0. Dependence is positive 

when (d/dt)h(t) > 0 and negative when (d/dt)h(t) < 0.

The general reduced form of the hazard function used in 

estimation is h(t|x) = ${/i(X),t), where m(X) is used in 

accounting for person specific observed heterogeneity by 

including a list of all the relevant variables, X. The 

other component, t, is used to explain the dependence of the 

hazard function on time. In the case of Cox's (1972) 

Proportional Hazard Model,2 the hazard rate factors into a 
function of time and a function of all the relevant 

covariates:

h(t|X) = /i(X)*(t). (2.2.5)

Here $(t) is the base-line hazard function and n(X;B)

2 see Kalbfleish and Prentice (1980) for a good discussion of 
Proportional Hazard rate models and their estimation, using 
non-parametric methods.

14
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describes how the base-line hazard varies with the 

covariates. 6 is a vector of unknown parameters. m (X) is 

typically taken as exp(XB) to ensure the non-negativity of 

the hazard function.

The choice of a function for #(t) is arbitrary. For a 

Weibull model, <fr(t) = at3'1. The choice of this base-line 

hazard function allows for positive (a > 1), negative 

(a < 1) and no duration dependence (a = 1).3 The hazard, 

survivor and density functions of the Weibull distribution 

conditional on the regressors are:

2.2.2 Censored Data and Parameter Estimation

A characteristic feature of duration models is that data on 

durations are seldom complete. It is common for some 

observations to be censored, typically right censored. An 

observation is said to be right censored if the length of 
the spell of unemployment that is observed is only a portion 

of the actual length of the spell, provided that the

3 The Weibull distribution, however, may be restrictive as it 
allows only monotonically changing hazard rate. A more 
general hazard function would allow for at least a 'U' or 
'inverted U' shaped hazard rate.

h (t|X) = e xp(XB)at3 1 (2 .2 .6 )
S(t|X) = e x p (-exp(XB)t“)

f(t|X) = exp (XB) ctta’1 exp (-exp (XB) ta) .

(2.2.7)

(2 .2 .8 )

15
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observed portion includes the beginning of the spell. This 

phenomenon typically occurs because of finite observation 

periods. Some events of interest may not have ended when 

the data acquisition period ends.

The data available to an econometrician are on the variables 

t̂  , Xj , and C- , i = 1...N. C is an indicator variable, 

such that:

Given the assumption of independent censoring, a right 

censored spell of length t contributes a probability, 

P(T>t), rather than a density to the likelihood function. 

If observations on the pair (t,C) are independent, the log 
likelihood function is generally written as:

C
1 if a spell is complete 
0 if a spell is right censored (2.2.9)

N
L = E [Cjlog fftJXj ) + (1 - Cj) log S(t,.|X, )] (2 .2 .10)

i=l

N
= E (C^log h(t,-|x,) + log Sftjx,-)] (2 .2 .11)
i=l

and for a Weibull model is:

N
E

i=l
(2 . 2 .12)

16
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The log-1ikelihood function can be maximised using standard 

non-linear maximising procedures to obtain estimates of the 

parameters 8 = [a,6']1 . If the model has been correctly

specified, then under mild regularity conditions, 9 is 

consistent for 9 with a probability density function that 

can be approximated in the usual way by a normal 

distribution with the precision matrix equal to Fisher's 

(theoretical) Information Matrix. The theoretical 

information matrix is derived as minus the expected value of 

the second derivative (hessian) of the log likelihood 

function. However, finding this expected value may be 

problematic sometimes, especially when the data consist of 

censored observations. Typically, the observed (sample) 

information matrix is used to find the precision matrix.

2.2.3 Generalised Residuals

Residuals have been widely used to assess the adequacy of 

linear models. An examination of residuals from a fitted 

model is an important way of testing the parametric 

assumptions made in linear regression models.4 In non­

linear models, there may not be any natural or automatic way 

of defining a residual. Following Cox and Snell (1968), 

residuals can be defined in a general sense that can be used 

for diagnostic checks of non-linear models. These

4 see Pagan and Hall (198 3) for a survey of residual based 
tests in linear regression models
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generalised residuals are obtained through a set of 

transformations of the observations that results in a random 

variable that has a simple and known distribution, if the 

model is correctly specified.

Consider the following model:

Yj = where i = 1...N.

Here the ith observation on a random variable Y; is written 

as a function of:

a) the characteristics of the individual represented by the 

observed vector X1,

b) a vector of unknown parameters Q, and

c) an unobserved random variable where 's are i.i.d.

If each equation Yt = g , ^ , © , ^ )  has a unique solution for 

e,, such that et = hjfY^Xj,©), then all the e- 's are defined 

as the generalised errors of the model in the sense of Cox 

and Snell. If © is replaced by its maximum likelihood 

estimate, the generalised residuals are obtained as:

cf = h i (Yi , X j, 9) (2.2.13)

Note that in a simple linear regression model, Yi = X ^ ©  + ei 

where the e ■ ' s are the errors, and

e- = Y- - Xj'© are the residuals.
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In the context of duration models, the survivor and the 

density functions are written as:

S (t|X) = exp[-n(tjx)] and: 

f (t|X) = h (t|X)exp[—n (t|X)].

Let e = fl(t[x). The Jacobian for this transformation is:

| J| = dt = 1 = 1

de dfl(t|x)/dt h {t|X)

Therefore, the density of e is given by:

h(t|X)exp(-e) 1 = exp(-e) (2.2.14)
h(t|x)

which is unit exponential.

Given independent durations, the £j's defined as the 

integrated hazard functions are generalised errors in the 

sense of Cox and Snell. For a Weibull model,

e = exp (Xfi>) ta. (2.2.15)

As before, parameters are replaced by their maximum 

likelihood estimates to obtain generalised residuals.

Notice that the choice of a generalised error e, given by 

(2.2.15), is by no means unique. Any non-linear 

transformation of e is also a generalised error in the sense 

of Cox and Snell. However, most of the specification 

diagnostics suggested in the literature are based on e.
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2.3 Unobserved Heterogeneity
In some instances, individuals in a population have 

differing hazard functions. This phenomenon is referred to 

as heterogeneity. The individual specific, observed 
heterogeneity can be controlled for by including a list of 
covariates and conditioning the hazard function on them. A 

problem arises, however, when some relevant variables are 

omitted such that the included regressors do not 

"sufficiently" control for the heterogeneity. Omissions of 

this type may be encountered when relevant variables are un­

observable. Examples of such variables are motivation, 

ability, spunk etc. Heterogeneity can also arise due to 

measurement errors in either the covariates, X, or duration 

time, t.5 Thus, after conditioning hazard functions on the 

included regressors, they may still differ across 

individuals due to some unobserved heterogeneity. This 

remaining heterogeneity may be incorporated into the model 

by rewriting /i(X) such that:

ju(X) = exp (XJ3+U) = V exp(Xfc) (2.3.1)

where V contains the effect of omitted regressors. Then for 

a Weibull model:

f(t|x,V) = V exp (X3) at4"1 exp (-Vexp (Xfi) ta) . (2.3.2)

5 Lancaster (1983,1985) discusses different interpretations 
for unobserved heterogeneity.
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2.3.1 Consequences of Unobserved Heterogeneity
Given only cross-sectional observations on N individuals, 

all the parameters a, 6, V, ...VN, will,in general, not be 

identifiable. A common solution is to make V a random 

effect. Let the distribution of V be represented by the 

density function, p{V). Then the survivor function, given X 

and V is S(t(x,V) = exp(-V n(tjx)). However, given data 

only on X, one needs to model the distribution of T 

conditional only on X and this is done by integrating the 

survivor function with respect to the distribution of V. 

Thus, conditional only on X,

Similarly, one can derive expressions for the hazard and 

density functions conditional only on X.

In the simple linear regression model, neglected 

heterogeneity often leads to an inaccurate interpretation of 

econometric results. This problem in linear regression 

analysis becomes serious if the omitted regressors are 

correlated with those which are included in the regression 

equation. This, however, is not true when the underlying 

model is non-linear. It is shown that results from duration 

models may be misleading even when V is distributed

S(t|X) exp(-V n (t|X)) p (V)dV (2.3.3)

= Ev[e xp(-V n ( t !X)) ]. (2.3.4)
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independently of X and t.

In the Weibull model,

S (t j X , V) = exp (-Vjuta) ; ^ = exp(XB), and: (2.3.5)

S(t|X) = r exp (-V/it°) p (V) dV. (2.3.6)

The hazard function conditional on X alone can be derived 

a s :

h (t|X) = - S log S(t|X)
St

= iiata-1 V exp (-V/ita) p (V) dV

S(tjX)

Mat"'1 E (V | T > t ) . (2.3.7)

Since E(VjT>t) is the average of V over the survivors at 

time t, it must decrease with time as people with higher 

values of V tend to leave the unemployed state first.6 This 

sorting out effect, due to the presence of heterogeneity 

leads, to a downward biased estimate of duration dependence. 

More formally, the average of V over time can be written as:

E(V|T>t) = V exp (-V/it ) p (V) dV 

S(t|x)

6 Salant (1977), Lancaster and Nickell (1980) etc. discuss 
this problem of identification in duration models.
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Therefore,

6 E (V IT>t) = 
St

- MC«ta 1 [ V2exp (-V/xt®) p (V) dV ] 

S(tjX)

+ fiat" [ ’ Vexp (-Vjita) p (V) dV ] 

S(t|X)

.a-1= - /iat Var[V|T>t] < 0 (2.3.8)

Thus, neglecting heterogeneity results in an estimated 

hazard rate that is falling faster or rising more slowly 

than the actual hazard rate. Furthermore:

S E(V|T>t) = - fl- nta V a r [V|T>t ] < 0. (2.3.9)
<SXj

If there is no unobserved heterogeneity (V is known), then 

log h(t|x,V) = log(at“"1) + log(^) + log(V).

Therefore,

S log h {t|X,V) = R-. (2.3.10)
5Xj

Thus, the proportional impact of changes in X on the hazard 

function is constant over time, a property of the 

proportional hazard model. However, with some unobserved 

heterogeneity,
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log h(tjx) = log(ata1) + log /i + log E(V|T>t)

and:

6 log h (11 X ) = fl. - Var [ V | T>t ]

fiXj E(V|T>t)

= Bj[l - fita Var[V| T>t] ]
----------------  . (2.3.11)

E [V|T>t]

As a result, the proportional impact of changes in X on the 

hazard function besides being diminished is also dependent 

on t and is no longer is of the proportional hazard type.7 

Thus, estimates derived from the model may be misleading 

even when variables included in the model are not correlated 

with variables that have been excluded. As a result, a 

major emphasis of diagnostic testing in duration models has 

been on testing for neglected heterogeneity.

Lancaster and Nickell (1980) discuss the consequences of 
unobserved heterogeneity for models that are more general than 
a Weibull model.
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2.4 Testing for Heterogeneity

2.4.1 Non-Parametric Graphical Analysis

The generalised residuals defined above can be used to test 

the specification of a duration model. For a correctly 

specified model, the residuals should behave approximately 

like a random sample taken from a unit exponential 

distribution. Graphical plots of the generalised residuals 

are used for informal specification checks of parametric 

models. As e has a unit exponential distribution under the 

null, its survivor function, S(e) = exp(-e). Therefore,

-log s (c) = 11(e) = e and the estimated integrated hazard 

function for the residuals is often compared with a 45° line 

to test the specification of a given model.

If the observations are uncensored, an empirical survivor 

function of the generalised residuals can be computed as:
A  -s. A  —  1S(e), where S(e) = N' (Number of sample observations > e) 

and minus the logarithm of the survivor function is plotted 

against the residuals. If the model is correctly specified, 

the scatter plot should cluster around a 4 5° line through 

the origin.8 Note that such graphical checks are general 

specification tests, not necessarily directed at testing for 

neglected heterogeneity.

8 see Lawless (1982), Lancaster and Chesher (1985b), Kiefer 
(1988) etc. for details.
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In Figure 2.1 and 2.2, such scatter plots are depicted. Two 

computer simulated samples, each consisting of 200 

uncensored observations, are generated. The first sample 

consists of Weibull variates and the second consists of 

variates derived from a Weibull distribution with some 

neglected heterogeneity, and hence are not Weibull 

variates.9 The maximum likelihood estimates of the 

parameters, from both sample sets, are obtained using the 

Weibull model. Using (2.2.15), the generalised residuals 

are obtained as:

e = exp(X6)ta.

These residuals are further used to construct the above 

mentioned graphs to check the adequacy of the Weibull 

specification. Figures 2.1 and 2.2 represent graphs for a 

correctly and incorrectly specified models respectively.

From Figure 2.1, it seems that the model is correctly 

specified. The departure from the 45° line in Figure 2.2 is 

obvious, indicating model misspecification.

In general, however, data consist of both complete and 

censored observations and thus the residuals have to be 

suitably adjusted to incorporate censored observations. In 

the case of right censored observations, the observed

9 Such a mixture distribution is generated using /i=exp(X5+U) 
where U is the heterogeneity term. Here, a random draw for 
U is taken from a normal distribution with var(U) = 2.
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duration is t = min[T,L], implying that an observation is 

complete only if it is less than the censoring time, L. If 

the observation is longer, it gets censored at L. Note that 

€(t ) is no longer distributed unit exponentially. However, 

as e(T) has a unit exponential distribution when the model 

is correctly specified, the following can be derived using 

the memory-less property of an exponentially distributed 

random variable:

Even though the modified generalised errors, e(t), do not 

have a unit exponential distribution, they still have a unit 

mean. Thus, graphical plots using the modified generalised 

residuals given by (2.4.2) can still be used to check the 

adequacy of the model for a moderate amount of censoring.

The two samples, mentioned above, are again used to examine 

the performance of the graphical procedures with censored 

data. With both data sets, about 22 percent of the 

observations are artificially censored by fixing the 

censoring times, L, appropriately. Again, maximum 

likelihood estimates are obtained and the survivor function 

of the modified generalised residuals is used for plotting.

E (e(T)|T>L) = c(L) + E (e(T)) = 1 + e(L). (2.4.1)

Therefore, the residual can be redefined as:

e (t) e(t) if uncensored 
e(t)+l if censored. (2.4.2)
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Figures 2.3 and 2.4 represent graphs for correctly and 

incorrectly specified models respectively. With graphical 

procedures some degree of caution should be exercised in 

interpreting the results, especially when data are 

censored.10 From Figure 2.3, one may infer that a Weibull 

model is inappropriate even though data are actually 

generated from a Weibull distribution. When the model is 

actually misspecified, departure from the straight line is 

some what more pronounced (Figure 2.4).

Alternatively, as e(t) is a positive function of t, one can 

use e(t) = min(e(T),e(L)) directly to plot graphs for model 

evaluation. If the model is correctly specified, sample 

observations on e(t) constitute a random sample drawn from a 

right censored unit exponential distribution. The Kaplan- 

Meier procedure can be used directly to compute the survivor 

function of the generalised residuals, € (t), along with the 

indicator function, C, denoting censoring. Figures 2.5 and 

2.6 are used to illustrate this method of graphical study of 

misspecification. As before, Figure 2.5 is based on the 

Weibull model and Figure 2.6 depicts the results when the 

underlying model is not Weibull. Here, graphs perform 

reasonably well. The departure from the 45° line is

10 Horowitz and Neumann (1989), using Kennan's strike data, 
show that graphical methods may lead to erroneous conclusions, 
when data are censored. Lancaster and Chesher (1985) examine 
some graphs using computer simulated models.
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apparently greater in Figure 2.6 as compared with Figure 

2.5.

2.4.2 Score Test

Generalised residuals can also be used for more formal 

diagnostic checks. A score test of heterogeneity can be 

constructed that tests for the zero variance of the 

heterogeneity term. Score or the Lagrange Multiplier (LM) 

tests have recently gained popularity in econometrics as 

they are based on estimation of the null model that 

incorporates parametric restrictions.11 These restricted 

models are easy to estimate, in many cases, as opposed to 

the Wald or the Likelihood Ratio tests for which the 

alternative model has to be estimated.

In order to implement a score test of heterogeneity, the 

probability density function, f (t|X) has to be specified.

As mentioned earlier, the unconditional survivor function is 

S(t|X) = Ev[exp(-eV)] where e is the generalised error. One 

way to obtain S(t|X) is to take expectation with respect to 

a specified parametric mixing distribution for V. As 

economic theory provides no information regarding the choice 

of any mixing distribution, an arbitrarily chosen

11 see Breusch and Pagan (1980), Engle (1982, 1984), Bera and
McKenzie (1986) and Godfrey (1988) etc. for an exposition and 
the required regularity conditions.
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distribution may lead to distorted results.12

Alternatively, one can derive a score test that does not 

depend on any parametric mixing distribution. Given a 

constant term in X, E(V) can be set to equal 1 without loss 

of generality. Let a 2 represent the variance of V. For 

small a 1 , S(t|X) can be approximated for by a second order 

Taylor series expansion of exp(-eV) around the unit mean of 

V as follows:

S(t|X) = Ev e x p ( - e )  + ( V  -  1 ) r d e x p ( - V e 1]  
— dV

+ 1 (V -l)2 [_df_exp (-Ve ) ] 
2 dV2 - V = 1

e x p ( - e )  -  e e x p ( - e ) E  ( V - l )  + 1 / 2 e 2e x p ( - e ) E v ( V - l ) 2

= e x p ( - e )  [ 1  + a 2 e 2 1
2

= S(t|X,V=l) [1 + a 1 e2 1. (2.4.3)
2

The density and the hazard functions can similarly be 

derived as;

f (t|X) = f(t|x,V=l) [1 + a 1 (€2 - 2e)] and: (2.4.4)
2

12 Heckman and Singer (1984a) show that parameter estimates may 
be very sensitive to the choice of the mixing distribution.
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h(t|X) = h(t|x,V=l) [1 - o 2 e 1.
1+. 5 a 2 e2

(2.4.5)

By using the preceding functions, a score test of whether 

a 2 = 0 can be easily be implemented as a test for unobserved 

heterogeneity. The log likelihood function, given by 

(2.2.10), using (2.4.3) and (2.4.4), can be written as:

C [ log f(t|x,V=l) + log (1 + g_2 (c2 - 2e)]
2

(1 - C) [ log S(t|X,V=l) + log (1+ q±_eL) ] (2.4.6)
2 — 1 .

The mean score evaluated at a 2 = 0 is;

1 5L = 1 Z C (e2 - 2c) + (1 -C) e2
N 6a 2 Q II O to 5S —  —

= l S[62 - 2Ce]
2N

(2.4.7)

Kiefer (1984), Burdett et al (1985) derive a similar mean 

score by using a 'U' representation of the heterogeneity 

term where n(X) = exp(X/3 + U) = V exp(XB). Given a constant 

term in X, the unconditional functions can be approximated 

by using a Taylor's series expansion of the density function 

around the zero mean of U as follows:
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f (1 1X) = f(t|x,u=0) [1 + a2/ 2 (1 - 3c + €2 ) ] . (2.4.8)

S(t|X) = S(t|x,U=0) [1 + a2/2 (€2 - c)]. (2.4.9)

Using these functions in the likelihood, the mean score is:

1 <SL = l z C(1 - 3e + e2 ) + (1 - C) (e2 - e)
N <5a2 a2 =0 2N L_ —

= 1 E [ e2 - 2Ce + C - c]. (2.4.10)
2N

As E(C - e) = 6L/6fio is set equal to zero to maximise the 

likelihood function, the two approximations to the density 

functions result in identical diagnostics used in testing 

for heterogeneity.13

If all the observations are complete, the mean score is

(1/2N) Z(e2 - 2e). A score test is (1/2N) Z(e2 - 2e) 

divided by its asymptotic standard error where maximum

likelihood estimates have been substituted into e.

Lancaster (1985) derives the variance of the mean score 

equal to 2.55063N for a Weibull model, using the theoretical 

information matrix. However, with censored data,

Lancaster's test cannot be used as the theoretical 

information matrix cannot be derived without exactly 

specifying the censoring mechanism.

13 Jensen (1987) and Sharma (1989) make a similar remark 
when data consist of uncensored observations only.
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Burdett et al.(1985) on the other hand, following the 

testing procedure proposed by Kiefer (1984,1985), use sample 

information to calculate the variance of the mean score.

For example, let the mean score (1/N) (<SL/<SaJ ), evaluated at 

ctj= 0, be S = (l/NJSSj. The suggested variance of the mean 

score is (1/NJ )£(si - sm) where sm is the sample mean of s.

As the information matrix, using a Weibull specification, is 

not block diagonal, the covariance between the elements of 

the score vector, 6L / 602 and <5L/<S0 is ignored where 9 = (a 

f t ' ) A s  a result, the proposed variance of the test 

statistic is over-estimated and thus would result in the 

under-rejection of the null hypothesis of no heterogeneity. 

Kiefer's (1985) claim that such a testing procedure is 

conservative in the sense that it leads to more rejections, 

cannot be true. This approach, however, can be used even 

when the data consist of some censored observations.

One possible way to improve on the computed variance of the 

mean score is to use the observed information matrix but 

include the effect of the off diagonal terms in the matrix. 

When the model is correctly specified, the theoretical 

information matrix equality holds and, therefore, two 

candidates for the observed information matrix are the 

sample hessian of the log-likelihood function and the outer 

product of the sample scores. If the outer product form of 

the observed information matrix is used, the resulting score
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test can be implemented easily. Let D be a (Nxk) matrix 

consisting of N sample observations of a (kxl) score vector. 

Therefore, the observed information matrix is given by D'D. 

The score test can easily be implemented by running an 

artificial regression of a vector of ones on D.u The test 

statistic can be calculated as NR2 where R2 is the 

uncentered coefficient of determination derived from this 

artificial regression.

2.4.3 Information Matrix test

The variation in the intercept term in X can also be viewed 

as having been caused by neglected heterogeneity. A score 

test of the hypothesis that the intercept has zero variance 

can be used as a test for neglected heterogeneity. Chesher

(1984)15 has shown that a score test whose form does not 

depend on the form of the heterogeneity distribution is the 

same as the information matrix test of White (1982).

The information matrix test is based on the principle that 

given the hypothesis of no misspecification, the information 

matrix can be expressed in either the hessian or the outer 

product form. For a correctly specified model:

14 Godfrey and Wickens (1981) first suggested this easily 
implementable version. See, also, Davidson an MacKinnon 
(1983) .

15 see, also, Cox (1983).
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62loqL = - E 61oaL 6 loaL
<5©„<5© '0 o _ 600 50o

where 0O is the true value of the parameter vector. 

Significant differences between the two can be interpreted 

as being caused by model misspecification. The test can be 

implemented by using the sample analogue of moments as 

follows:

dn(9) = 1 £ 62loqL 
N 59691

- + 1 sr 61oaLlr 61oaL1 1 
9=9 N 69 69

(2 . 4 . 12)
9=9

where (~) represents evaluation at the maximum likelihood 

estimates. The test is conducted to see if vector given by 

(2.4.12) is significantly different from zero.

The most general form of the test involves comparing all

the N(N+l)/2 distinct elements of dn(9) with zero. However, 

attention may be confined to any subset of the distinct 

elements, in particular, the intercept. 'iven ^(X) = R0 + 

X161 in the log-likelihood function,

L = E[Clog f (t|X) + (1 - C)log S(t|X)],

6L/6ft0 = E(C - c) .

This implies that (C - e) = 0 as 6L/6B0 is set to zero to 

get to get maximum likelihood estimates. Furthermore,
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6* L/6BoJ = 2 (-e ) and:

[SL/6B0]Z = 2(C - O 2-

Therefore, (1/N) 2 [ L/.5B/ ] + (1/N) 2 [ <5L/6B0]2 at the maximum

likelihood estimates is:

= 1/N 2[(C - i)2 - i]

= 1/N 2[e2 - 2Ce]

which is the same as the numerator of the score test derived 

before.

From the above result it can be seen that the test for 

heterogeneity can be conducted using White's information 

matrix test. Chesher (1983) and Lancaster (1984) have 

suggested a simple and easily implementable NR2 version of 

the Information Matrix test. This test is carried out by 

running an ordinary least squares regression. The lhs 

variable for this regression is simply a vector of ones. The 

rhs variables are:

a) [<SL/660]2 + <52 L/<SB02 and:

b) the scores of all the parameters of the model.

For a Weibull model, the rhs variables are:
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<5L = (C - e) X. 
SR;

j = 0,...K , (2.4.13)

&L = C + log(t) (C - e) , and: 
6a a

(2 . 4.14)

[5L/6/3J2 + 62 L/6BQ2 = (C - €)2 - e. (2.4.15)

The asymptotic X2 (1) statistic can be computed by

multiplying N by the uncentered R 2 from the above mentioned

artificial regression. Note that this implementable version 

is algebraically equivalent to the improved Kiefer's version 

suggested earlier.

2.4.4 Conditional Moment Restriction Test

As seen earlier, all suggested tests of heterogeneity in the

literature are based on the generalised residual, e. As e

has a unit exponential distribution when the model is 

correctly specified, testing its second moment restriction 

has been the basis of tests of heterogeneity. The quantity 

that is equated with zero is:

(1/2N) E[€2 - 2Ce]

= (1/2N) S[e2 - 2e], if all the observations are complete

= (1/2N) S[e2 - 2], as 2 e/N =1

where s2 is the sample variance of the generalised residual.

(1/2) (s2 - 1) (2.4.16)
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Thus, the score test or White's information test of no 

heterogeneity amounts to testing the second moment 

restriction of e, namely that Var(e) = E(£-1)J = 1.

If some observations are censored, then:

{1/2N) 2[eJ - 2Ce ] = (1/2N) S[(e-1)2 - C]

= (1/2) [s/ - Z(C/N)] (2.4.17)

where e = e + l-C and s/ is the sample variance of e. This 

result can be interpreted as testing the second moment 

restriction of the adjusted generalised residual, e, namely 

that Var(e) = E(e -1) = it* where tt* is the expected 

probability of censoring.16

Thus, heterogeneity tests can be considered conditional 

moment tests as studied by Tauchen (1985) and Newey 

(1985).17 An easily implementable rendition of the 

conditional moment tests exists which can be computed by 

running an artificial regression. An ordinary least square 

regression is run where the lhs variable is simply the 

difference between the theoretical and the predicted moment 

from the probability model and the rhs variables comprise a 

constant and all the scores of the model. Testing if a

16 see Lancaster and Chesher (1985a, 1985b).

17 Pagan and Vella (1989) provide a good discussion of such 
tests.
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particular moment restriction is satisfied is equivalent to 

performing a t test for a non zero intercept. A major 

advantage of this procedure, based on an artificial 

regression, is that it gives the user a detailed information 

on the statistical significance of each moment restriction 

separately, instead of the joint significance of all moment 

restrictions (Tauchen (1985)). This information, however 

cannot be useful when moment restrictions are correlated. 

Validity of a particular moment restriction will depend on 

the validity of the other if the two are correlated. The 

joint test of all restrictions is implemented by testing for 

a non-zero intercept in a SUR regression model.
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CHAPTER 3

GENERAL SPECIFICATION TESTS OF MOMENT RESTRICTIONS:
WITH AN APPLICATION TO KENNAN'S STRIKE DATA

3.1 Introduction
In this chapter it is shown that the application of joint 

tests of misspecification, rather than partial or separate 

tests, is necessary in conducting specification tests of 

parametric duration models. The validity of most of the 

popular separate tests in the econometric literature relies 

on some auxiliary assumptions in addition to the ones being 

tested. For example, a test of heteroscedasticity, 

generally relies on the auxiliary assumption that there is 

no serial correlation in the data. In the presence of more 

than one source of misspecification, inferences drawn from 

the outcome of any separate test are distorted, especially 

when separate tests are correlated. As a consequence, the 

size and power of such tests are incorrect when the 

additional auxiliary assumptions are not satisfied by the 

given data. One solution to such a problem is to compute an 

omnibus statistic, that tests all the assumptions made 

within a given model jointly, and hence has power against
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several forms of misspecification. 1

In this chapter, such joint tests are considered for Weibull 

and exponential duration models. An empirical illustration 

of the tests based on Kennan's (1985) model of strikes is 

provided. It is shown that even when none of the separate 

tests is able to detect misspecification, the joint test 

indicates ample evidence of misspecification. This is a 

concrete example of the advantages of omnibus test 

procedures since they avoid the incorrect inferences drawn 

in a number of previous analyses of the Kennan strike data.

In the context of parametric duration models, it is 

desirable to have diagnostic tests of the validity of the 

distributional assumptions, since in the presence of 

misspecification, estimation by maximum likelihood methods 

may lead to inconsistent estimates. Two important sources 

of misspecification are the functional form of the hazard 

function and neglected heterogeneity. To date tests of 

neglected heterogeneity have been emphasised.2 The separate 

heterogeneity test is derived on the assumption that the

1 Bera and Jarque (1982) follow such a procedure in the case 
of a linear regression model. Moon (1988) considers joint 
score tests for skewness and heteroscedasticity in a binary 
logit model.

2 see Lancaster (1983,1985), Kiefer (1984), Burdett et a l .
(1985), Lancaster and Chesher (1985a).
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functional form of the model is correctly specified, and 

therefore will not have the right size or power when the 

maintained assumption is not true. Moreover, Manton, 

Stallard and Vaupel (1986) and Trussell and Richards (1985) 

have shown that model estimates may be sensitive to the 

choice of the underlying hazard function. Hence, if the 

choice of the estimated hazard function is deemed 

restrictive, then, at the very least, tests for functional 

form misspecification should accompany any test of 

heterogeneity.

As mentioned in Chapter 2, the test of heterogeneity is 

interpreted as testing for the second moment restriction of 

the integrate hazard function, e, which is the generalised 

error in the sense of Cox and Snell (1968). However, such a 

test is a valid separate heterogeneity test only if the 

conditional duration distribution is correctly specified.

The second moment restriction of e cannot be evaluated in 

isolation when other sources of misspecification exist 

concurrently. More generally, a joint test of all moment 

restrictions of e should be used rather than a test of the 

second moment only. An apparent limitation of such a 

strategy is that higher order moments may not be estimated 

accurately from a given sample. Moreover, testing for all 

higher order moments of e implies a test for general 

misspecification and thus rejecting the null would not
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automatically direct one to a better respecified model.

Alternatively, tests are proposed in this chapter that are 

based on a specified parametric alternative. This point is 

elucidated in the context of a heterogeneous generalised 

gamma distribution which can be specialised to exponential, 

Weibull, gamma and log-normal duration models, with or 

without heterogeneity. In Section 3.2, a heterogeneous 

generalised gamma duration model is considered and used to 

derive joint and separate score tests for functional form 

misspecification and neglected heterogeneity for a Weibull 

model. Similar tests are derived for an exponential model. 

In Section 3.3, these tests are applied to Kennan's strike 

data. It is inferred that when any separate is implemented, 

Weibull as well as exponential models seem appropriate. 

However, when a joint test is applied, both exponential and 

Weibull models are found to be inadequate. Informal 

plotting procedures are also applied both for an expository 

analysis of the data and for testing for parametric models.

With the rejection of the joint null hypothesis, the 

possible misspecification could arise either from the 

functional form of the hazard function or from neglected 

heterogeneity. To detect the source of misspecification, a 

sequential parametric test procedure of a "general-to- 

specific" kind is proposed and carried out. A flexible,
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generalised gamma model is estimated and used to test for 

heterogeneity in Section 3.4. Similarly, heterogeneity is 

allowed for through the use of a gamma representation for 

the distribution of the heterogeneity term in the Weibull 

and exponential models and is used to test for functional 

form misspecification. The results indicate neglected 

heterogeneity in the sample and a non-monotone hazard 

function for the strike duration which is in accordance with 

Kennan's inference.

The tests of misspecification are given the tests of 

conditional moment restriction interpretation in Section

3.5. It is inferred that all tests of misspecification can 

be interpreted as the tests for moment restrictions of the 

appropriately defined generalised errors. Using the Newey 

(1985) and Tauchen (1985) framework, the procedure for such 

tests is expounded in a general setup. In Section 3.6, 

tests of moment restrictions for Weibull and exponential 

models are developed. The tests of higher order moment 

restrictions of e are applied to Kennan's strike data. It 

is seen that even though the tests of the second and third 

moment restrictions of e do not spot misspecification, the 

results change when the fourth moment restriction is added 

on to the second and third moment restriction. Section 3.7 

contains the concluding comments.
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3.2 Score Tests For Misspecification

3.2.1 Generalised Gamma Distribution

In order to avoid distortions arising from a restricted 

choice of a parametric duration distribution, it is proposed 

that tests be based on a three parameter generalised gamma 

distribution (g.g.d.). The density function of a g.g.d. is:

f(t|X) = /ikat*k'1 exp ( -jita) /T (k) . (3.2.1)

fj, is taken as exp(XB) = exp(ft0+X1ft1) to ensure its non­

negativity; X is a vector of explanatory variables.

Pereira (1978), using Cox's (1961, 1962) approach for

testing non-nested hypotheses, develops tests to 

discriminate between log-normal, gamma, Weibull and 

exponential models. This approach, however, becomes 

intractable when heterogeneity is allowed for.3 

Alternatively, the encompassing approach is suggested as a 

means of discriminating between the above-mentioned 

parametric models. This point is elucidated in the context 

of a heterogeneous generalised gamma distribution which can 

be specialised to the above models with or without 

heterogeneity. Even though it is difficult to estimate 

parameters of this distribution, score tests can be easily

3 Heckman and Walker (1987) suggest goodness of fit criterion, 
among other criteria, to validate competing non-nested models.
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implemented since only the null model needs to be estimated 

for such tests.

Given some unobserved multiplicative heterogeneity, 

represented by V, the distribution (3.2.1) conditional on V 

can be written as:

As V is not observable, the unconditional distribution can 

be derived by integrating (3.2.2) with respect to the 

distribution of V. Given a constant term in X, E(V) can be 

set to equal 1 without loss of generality. Further, for a 

small variance of the heterogeneity term denoted by a 2 , the 

density function can be approximated by a second order 

Taylor series expansion around the unit mean of V as 

follows:

f(t|X) = Ev[f(t|X,V)]

= f (t j X, V=l) [1 + {a2 /2) { k(k-l) - 2k/Jt“ + (Mt“) 1 ) ] . (3.2.4)

f(t|x,v) = v V katak'1 exp(-V/ita)/r (k) . (3.2.2)

+ (3.2.3)

and:
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Note that the unconditional density function, given by 

(3*2.4), does not depend upon any parametric representation 

of the heterogeneity distribution.

2.2 Joint and Partial Score Tests for a Weibull Model

The hypothesis that the given distribution is Weibull can be

tested using a score test where the null is specified as:

Ho: a 1=0 and k=l. (3.2.5)

For the approximate density in (3.2.4), the log likelihood 

function is:

L = £ klog(/i) + log(a) + (ak - l)log(t) - /it® - log T(k)

+ l o g [1 +  (cr2 / 2 ) {k ( k - l )  - 2 k M t a + ( M t a) 2 }] (3.2.6)

Let 9 = (8., 1 ©j')' where:

©1' = (a2 k) and 92' = (60 3, • a). (3.2.7)

Let s(9) and 1(9) denote the score vector and the 

information matrix respectively. The elements of the 

relevant score vector, s1 (9C) , evaluated under the null 

hypothesis are:

dL
da2

dL
dk

= 1 £ (e2 - 2 e) = sn (90) . (3.2.8)
Ho 2

Ho
= 2 [ log (/i) + olog(t) - 0(1)]

= £ [ log ( € ) - 0(1)] = s12(0o). (3.2.9)
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where e = fj,ta and 0(r) = dlog T(r) is the digamma function
dr

and 0'(r) = d*log r (r ) is the trigamma function.
dr'

The joint score test of the null hypothesis is:

(3.2.10)

where (~) denotes that the quantities have been evaluated at 

the restricted maximum likelihood estimate of the parameter 

vector, 6, and I11 = [In - I12 (I22) _1I2i ]_1 *-s t*ie Partitioned 
inverse of 1(6). The given test statistic has a chi-square 

distribution under H0 with degrees of freedom determined by 

the number of restrictions imposed. The partitioned inverse 

based on (3.2.5) can be derived as (see Appendix 3A):

1-q

q-1/2

q-1/2 

0*(2)-q
(3.2.11)

where q = 1/0'(1) and N is the sample size

The partial test for heterogeneity, LMh, under the 

assumption that the hazard function is correctly specified 

is:

LMh = Sl1* [ N (1-p) ] 1 s„ (3.2.12)

which is similar to the test proposed by Lancaster (1985).
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Similarly, a partial test for functional form 

misspecification, given no neglected heterogeneity, is:

From (3.2.11), it can be seen that the relevant portion of 

the information matrix is not block diagonal and thus the 

partial tests are not independent. Due to the non-zero 

correlation between the two tests, the nominal size and 

power of any partial test will be affected by the presence 

of the other source of misspecification that is ignored. 

Therefore, results of partial tests can be misleading when 

both sources of misspecification exist.

2.3 Joint and Partial Score Tests for an Exponential Model 

Analogous to the above procedure, the exponential 

specification in the context of a heterogeneous generalised 

gamma model, can be tested using:

Implementing the notation given above, with 9, ' = (a 2 a k) , 

the elements of the relevant score vector, s1 (0Q) , are:

LMf = s12* [N(0* (2) -p) ] '1 S12. (3.2.13)

Ho: a 2 =0, a = l, k=l. (3 . 2.14)

dL
da2 H,O

1 Z[e2 - 2c] = s„ (60) .
2

(3.2.15)

dL
da HO

= 2[1 + (l-e)log(t)] = s 12(0o). (3.2.16)
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dL_ = Z [ log (e) - 0(1)] = s13(©0). (3.2.17)
dk H0

The test will be based on the following expression for the 

relevant partition of the information matrix evaluated under 

(3 . 2 . 14) :

[I11 (0J ] 1 = N

1

-1

- 1/2

-1 

0 ' (1) 
1

- 1/2
1

0 ' (2)
(3.2.18)

The partial tests of o l = 0, a=l and k=l represented by LM^,, 

LMa, LMk respectively, can similarly be derived as:

= s13 ' [ N ] 1 Sl 1 (3.2.19)

LMa = s12' [N01 (1) ]'1s12 (3.2.20)

LMk = s13' [N0 1 (2) ]_1s13. (3.2.21)

Similarly, using the appropriate elements from (3.2.18), 

tests of two restrictions can be derived. For example, a 

test of functional form misspecification for an exponential 

model would imply testing for a=l and k=l jointly. Using 

(3.2.18), such a test is easily implementable.

One further comment needs to be made regarding the 

computation of these tests in the presence of censored 

observations. With censored observations, the theoretical
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information matrix needed to implement the score tests 

cannot be derived without additional information regarding 

the censoring mechanism. However, the tests can be based on 

the observed information matrix. Efron and Hinkley (1978), 

more generally, recommend the use of the observed 

information matrix as it is closer to the data than the 

corresponding expected (theoretical) information matrix.

Two possible candidates for this matrix are the sample 

hessian of the log-1ikelihood function and the outer product 

of the sample scores.4

4 In Chapter 5 of this thesis, various ways of implementing 
score tests, in the presence censored observations, are 
discussed.
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3.3 Analysis of Stride Data

3.3.1 Background

In order to illustrate specification tests, data on duration 

of the contract strikes in U.S. manufacturing industries, as 

reported by Kennan (1985), are analysed. Kennan studies the 

effect of business cycles on strike durations for the period 

1968 through 1976. A proxy for cyclical effects is formed 

by taking the residual from the regression of the logarithm 

of industrial production in manufacturing (INDP) on time, 

time squared, and monthly dummy variables. The data consist 

of 566 observations on duration of completed strikes 

measured in days and the corresponding value of INDP.

3.3.2 Graphical Analysis

Graphical procedures are often employed in duration models 

both for an exploratory analysis and for testing for the 

parametric specification of a given model5. Empirical 

plots, using observations grouped by the levels of the 

covariates to achieve homogeneity, can be used to suggest 

the shape of the underlying hazard function. An attempt is 

made here to create two such homogenous samples for X below 

and above the mean. The empirical integrated hazard 

function, n(t), for the two samples is derived. The

5 see Lancaster and Chesher (1985b), Kiefer (1988), Lawless 
(1982) and Chapter 2 of this thesis for details.
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estimated n(t) = minus log of the estimated sample survivor 

function, S(t), where:

A '1S(t) = N (Number of sample observations > t ) .

The plot of the integrated hazard function can suggest the 

shape of the underlying hazard function. If the integrated 

hazard is linear, it represents a constant hazard implying 

an exponential model. A convex integrated hazard implies an 

increasing hazard and a concave integrated hazard implies a 

decreasing hazard. From Figures 3.1 and 3.2, the underlying 

hazard function seems neither constant nor monotonic. This 

observation may have resulted from the fact that the above 

procedure to suggest the appropriate, underlying, functional 

form has not worked due to neglected heterogeneity in the 

sample. Grouping observations by the levels of the observed 

covariates may not have resulted in homogeneity in the 

distinct sub-samples.

Graphical plots are also used to ascertain if a particular 

parametric model is adequate. For a correctly specified 

parametric duration model, the generalised residuals, 

defined as the integrated hazard function, should behave 

approximately like a random sample taken from a unit 

exponential distribution. A product-1imit estimate of the 

integrated hazard function of the generalised residuals is 

obtained. If the model is correctly specified, the scatter 

plot of this estimate against the generalised residuals
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should cluster around a 45° line through the origin.

Such scatter plots for the exponential, Weibull and 

generalised gamma models are plotted in Figures 3.3, 3.4 and

3.5. It is observed that the departure from the 45° line is 

almost identical in all plots. One problem with informal 

graphical procedures is that some degree of subjectivity is 

involved in interpreting the results. If one were to infer, 

from Figure 3.3, that the exponential model is inadequate, 

the less restrictive models graphed in Figures 3.4 and 3.5 

offer no improvement. As a preliminary look at Figures 3.1 

and 3.2 suggests that the hazard function is neither 

constant nor monotone, one expects the plots to show a 

substantial improvement when the g.g.d. is used to model the 

hazard function. This is obviously not the case. The 

problem may be that not only is the underlying hazard 

function non-monotone, but there is also some neglected 

heterogeneity in the sample, causing misleading results.

3.3.3 Parametric Specification Analysis

All the previous conjectures made using informal graphical 

plots are here formalised with parametric tests. The 

specification tests, described in Section 3.2, implemented 

on the exponential model and the Weibull model are reported 

in Table 3.1 and Table 3.2 respectively. To reiterate, the
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results presented in the tables are based on the score test 

principle where the parameters of the alternative hypothesis 

are not estimated. For instance, in order to implement 

tests for an exponential specification, the parameters a 1 , a 

and k are not estimated.

From Table 3.1, it is seen that none of the partial tests 

detect any misspecification in the exponential model. This 

implies either that the model is correctly specified, or 

that the joint presence of more than one source of 

misspecification has some kind of cancellation effect on the 

partial tests. Pagan and Vella (1988) and Kiefer (1988) 

have reported specification tests that support a simple 

exponential model for the same strike data. This is 

contrary to Kennan's arguments for a non-monotone hazard 

function. The misleading indication of a good fit of the 

model may be explained by the cancellation of the effects of 

true duration dependence with the spurious duration 

dependence induced by neglected heterogeneity (see also 

Jaggia and Trivedi (1989)). However, the joint null 

hypothesis of a2=0 and a=l is also not rejected. In fact, 

none of the two restriction tests suggest misspecification. 

This apparent inconsistency may be due to the fact that the 

hazard function is non-monotone and is not accurately 

captured by a monotonic Weibull hazard function or gamma 

hazard function. However, the joint test of three
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restrictions, based on a heterogeneous generalised gamma 

distribution, does indicate that the exponential model is 

inadequate.

The results from the estimated Weibull model, shown in Table 

3.2, also support similar conclusions. The joint test of 

the two restrictions, a 2=0 and k=l, is not supported by the 

given data, even though the two partial tests fail to reject 

the null hypothesis.

This analysis suggests that in order to detect violation of 

any parametric assumption, no additional auxiliary 

assumptions should be made in estimation. For example, one 

has to allow for heterogeneity in estimation to test for 

functional form misspecification. Similarly, one has to 

estimate a fairly general hazard model in order to have a 

valid test of heterogeneity. This will provide the useful 

information about the desirable direction for the 

respecification of the model and is considered in the next 

section.
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3.4. Detecting the Source of Misspecification

3.4.1 Functional Form Misspecification

A known limitation of joint testing is that a significant 

joint test does not indicate the nature of the required 

respecification of the model. In order to test for 

functional form misspecification, one may proceed as 

follows: Consider the Weibull model, with the

multiplicative heterogeneity term, V, in the density 

function:6

Several authors (Lancaster (1979), Vaupel et al.(1979) etc.) 

have used the gamma distribution as a convenient mixing

of only as a proxy for omitted regressors. More generally, 
V captures some intrinsic randomness in the model. The mixing 
distribution is used not only to compensate for some omitted 
regressors but also to correct for an overly restrictive 
individual hazard function.

7 Hougaard (1984, 1986) shows that inverse gaussian
distribution, like gamma, has all the desirable properties of 
a mixing distibution though it is not as widely used. He also 
suggests a more general distribution that specialises, among 
others, to gamma and inverse gaussian distributions.

f(t|X,V) = Vpa t"'1 exp ( -Vjita) . (3.4.1)

distribution for V.7 If V has a gamma distribution with a 

unit mean and variance of 1/0, the density function 

conditional only on the observed X is:

f (t | X)
0+/it'

(3.4.2)

6 Jaggia and Thosar (1989) argue that V should not be thought
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The log-likelihood function, using (3.4.2), can be maximised 

in the usual way. To test for a functional form 

misspecification in the generalised gamma family with gamma 

heterogeneity, one may test for k=l. The heterogeneous 

generalised gamma distribution, given by (3.2.2), 

conditional on V is:

f(t|x,V) = VkMkat“k‘1exp (-V/it°)/r (k) .

Given that V is gamma distributed with unit mean, the 

unconditional density is:

f (t I X) = /ilcotak“1 e9 r(0+k) (3.4.3)
n j . ] r(e+^ta) r(k) r(9)

and the log-likelihood function and the efficient scores 

are, respectively,

L = Z klog(/j) + log(a) + (ak-l)log(t) + 01og(0) + log T(0+k)

- (0+k)log(O+^t0) - log T(k) - log T(0) (3.4.4)

and:

dL
dk H0

= Z |~log(/i) + alog(t) + 0(0+1) - 0(1) - log(0+jit“7J

= Z [log(€) + 0(0+1) - 0(1) - log(0+e)]. (3.4.5)

If an exponential model with a gamma heterogeneity
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distribution is estimated, the extra restriction, a=l, can 

similarly be tested.

These tests of functional form misspecification are applied 

to the heterogeneous exponential model and the Weibull 

model, as shown in Table 3.3 and 3.4 respectively. The test 

statistics are based on the observed information matrix 

computed as the outer product of the sample scores. From 

the tables, it can be inferred that the hazard function is 

neither constant nor monotonic, which is consistent with 

Kennan's findings. The next logical step is to determine if 

there is neglected heterogeneity in the sample.

3.4.2 Neglected Heterogeneity

Given that even the Weibull hazard specification is not 

appropriate for the hazard function, one can estimate a 

generalised gamma model and test for neglected 

heterogeneity. Generalised gamma models are known to have 

convergence problems, especially when the parameter, k is 

large. The model has to be reparametrised to obtain the 

maximum likelihood estimates.8 However, no convergence 

problems were encountered with the given strike data, even 

with the original parametrisation. A possible explanation 

for this result is the large sample size and the fact that

8 see Lawless (1980), and the references therein, for an 
explanation of why such models do not converge and for 
possible modifications that would allow for their estimation.
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the estimated value of k is small.

A score test of a 1=0 may be based on (3.2.6) which does not 

depend upon any parametric representation of the 

heterogeneity distribution. Using (3.2.6), the appropriate 

score is:

dL = 2 1 k(k-l) - 2k^ta + (Mt“)2
da2 Ho 2 - -

The score test of neglected heterogeneity in a generalised 

gamma model is also based on the observed information 

matrix, computed as the outer product of the sample scores. 

From Table 3.5, It can be concluded that there is evidence 

of unobserved heterogeneity in the sample. It is 

interesting to note that a partial test of heterogeneity 

detects misspecification only when a fairly general duration 

distribution is used in estimation.9

The results of the parameter estimates under alternate model 

specifications are presented in Table 3.6. It is noted that 

whenever a more general hazard function is estimated, the 

additional parameter is found to be insignificant. For 

example, when a Wald type test is applied to a generalised 

gamma model, it is found that both a and k are not

9 Convergence problems in estimation were encountered when a 
g.g.d. with gamma heterogeneity model was attempted.
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significantly different from 1. This result implies that an 

exponential specification is appropriate. Furthermore, the 

likelihood ratio (LR) test, computed by taking twice the 

difference between the maximised log-likelihood values of 

the null and the alternative models, suggests that the 

generalised gamma distribution is not an improvement over 

the Weibull or the exponential model. However, unlike the 

cases of the exponential and Weibull models, when a 

generalised gamma model is estimated, the separate score 

test of heterogeneity indicates the presence of neglected 

heterogeneity. The misleading results obtained from using 

Wald or LR tests can once again all be attributed to the 

fact that one possible misspecification, in the form of 

neglected heterogeneity, is being ignored when testing for 

the functional form specification of the model.

When a generalised gamma model is estimated, the estimates 

of a and k are found to be 0.71 and 1.71 respectively, 

implying an inverted 'U' shaped hazard function (see Glaser 

(1980)). This result is in contrast to Kennan's finding of 

a 'U' shaped hazard. Quite possibly the above estimates of 

the shape parameters are misleading due to neglected 

heterogeneity in the sample. The estimate of the regressor 

coefficient in all models, however, implies that strike 

durations are countercyclical, as in Kennan.
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3.5 Conditional Moment Testa

3.5.1 Interpretation

As seen earlier, the test of heterogeneity is based on the

generalised residual, e. Since e has a unit exponential 

distribution when the model is correctly specified, testing 

its second moment restriction has been the basis of tests of 

heterogeneity. When all observations are complete, the 

quantity that is equated with zero is:

1/2N £[e2 - 2e ]

= 1/2N E[e2 - 2], as Ee/N = 1 at the ML estimates.

= 1/2 (s2 - 1)

where s2 is the sample variance of the generalised residual. 

Thus, the score test or White's information test of no 

heterogeneity amounts to testing the second moment 

restriction of e, namely that Var(e) = E(e - l)2 = 1.

However, one cannot test for the second moment restriction 

in isolation as neglected heterogeneity may not be the only 

source of misspecification in the model. Therefore, it is 

necessary to test for the second order moment restriction 

along with the higher order moment restrictions of e in 

order to test the specification of a model. Alternatively, 

it is noted that there is no unique way of defining a
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generalised error. Any non-linear transformation of the 

integrated hazard function can be interpreted as a 

generalised error in the sense of Cox and Snell. Testing 

moment restrictions of all such errors can be used to check 

model adequacy. For example, if e is defined as the 

integrated error, then e, = log(e) has a standard extreme 

value distribution with well defined moments, such as Etc,)

= 0(1) = -.5772 and Varft,) = 0'(1) = n 2/6. Similarly, one 

can define e2 = e^ogft) as yet another generalised error, 

and so on. There is an infinite number of moment 

restrictions that can be thus evaluated. However, testing 

moment restrictions of all such errors will be meaningful 

only if an interpretation can be provided for the situation 

in which a particular moment restriction is not satisfied, 

given that all the other restrictions are met by the given 

data.

From (3.2.8), one can see that the score test of k=l is 

equivalent to testing for the first moment restriction of e1 

= log(e). If all relevant moment restrictions can be thus 

identified, an omnibus test can be implemented using the 

conditional moment restrictions framework studied by Tauchen 

(1985) and Newey (1985) and, more recently, White (1987).10 

With the Tauchen and Newey framework, the asymptotic

10 Pagan and Vella (1989) give a good exposition of such tests 
and their applications to cross section data.
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distribution of all such moment restrictions can be derived 

in a general setup and can be used to construct a joint test 

to check their validity.

3.5.2 The Tauchen-Newey Framework

Tauchen-Newey tests are based on the auxiliary criterion 

function, m(y,9) that has a mean of zero with the specified 

probability distribution under the null hypothesis. This is 

similar to specifying a moment restriction that is expected 

to be satisfied if the model is correctly specified. The 

test is based on the magnitude of the following statistic:

t = £ Z m(y,0) (3.5.1)

where (~) denotes that the quantities have been evaluated at 

the maximum likelihood estimates of 9. m is a (qxl) vector

implying q moment restrictions. The statistic r is useful 

for testing the specification of the model as it converges 

almost surely to zero when the model is correctly specified 

and to a non-zero quantity when the specification is 

incorrect (Tauchen (1985)). Intuitively, when the model is 

correctly specified, the maximum likelihood estimate of 9

converges to the true parameter value 90, and r converges to 

the expectation of the auxiliary function which by 

construction is zero. Under the alternative hypothesis, the 

estimated 9 converges to the quantity 9*and the expectation
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of m(y,8*) under the alternative probability model, in 

general, is non-zero.

The test is based on the statistic t that has a well defined 

asymptotic distribution under the null. Using the notation 

of Pagan and Vella (1989)11, the asymptotic distribution of 

estimated r can be specified as:

N 1 7 n (0, A V A ') (3.5.2)

where:

A = [1^ JH'1] (3.5.3)

I is a (qxq) identity matrix, where q represents the 

number of conditional moments being tested.

J is a (qxk) matrix = E(<5m/<50) .

H is a (kxk) matrix = -E (S2 1 j/6969 1 )

V =
V _  V.md
V Vdm dd

V is a (qxq) matrix = Efmm'),

see Tauchen (1985), for example, for the regularity 
conditions.
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is a (qxk) matrix = E(md'),

is a (kxk) matrix = E(dd'), where 

d = 61^/69 is the score vector.

Therefore,

AVA' = Vm  + JH'1V. + V J T ’j 1 + JH 1J 1 .m m  am  mu (3.5.4)

Moreover, the generalized information equality holds under 

the null hypothesis, implying that J = -V^. This further 

simplification results in:

The conditional moment test can, thus, be implemented as:

Furthermore, if the expectations cannot be obtained 

analytically, sample moments can be used in place of the 

population moments to implement the test. The quantities in 

the variance of the relevant statistic can be estimated as:

V = 1 E mm' = 1 M'M.mm —  —N N

Vm d = l Z r n d '  = 1 M'D.
N N

H = -1 £(<5* 1/6959’ ) = 1 £ d d ' = 1 D'D. 
N N N

A V A ' = V, (3.5.5)

(3.5.6)
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Here M is an (Nxq) matrix specifying N sample observations 

of a (qxl) vector with q moment restrictions. Similarly, D 

is an (nxk) matrix specifying N sample observations of a

(kxl) score vector. With these quantities, the test is
computed a s :

N 2 r' [M'M - M'D(D,D)-1D'M]-1 T .

= i'M [M'M - M 1 D ( D ' D)"1 D'M]-1 M'i (3.5.7)

where i is a (Nxl) vector of units.

This rendition of the test can easily be implemented by 

running an artificial linear regression. Consider a 

regression of i on Z where Z = [DM], The NR2 derived from 

this artificial regression, where R 2 is the uncentered 

coefficient of determination, is given by:

i 1 z (z *z) ~ ' z ' i .

As i'D = <SL/68 = 0 by the first order restriction of the 

maximum likelihood estimation, this term is equal to:

-i
D'D D'M

[0 i'M] [0 i'M]
M' D M'M

i'M [M'M - M'D(D'D) 1D'M]"1 M'i
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which is the same as (3*5.7). Therefore, the Tauchen-Newey 

type moment restriction test can easily be implemented by 

computing the NR1 from the above mentioned artificial 

regression.

Another readily iroplementable version of the conditional 

moment test also exists. This test consists of running an 

OLS where the lhs variable is simply the difference between 

the theoretical and the predicted moment from the 

probability model. The rhs variables comprise a constant 

and all the scores of the model. Testing if a particular 

moment restriction is satisfied is equivalent to performing 

a t test for a non-zero intercept. A major advantage of 

this procedure is that it gives the user detailed 

information on the statistical significance of each moment 

restriction separately, instead of the joint significance of 

all moment restrictions (Tauchen (1985)). This information, 

however, cannot be useful when moment restrictions are 

correlated such that is not block-diagonal. The 

validity of any particular moment restriction will depend on 

the validity of the other if the two are correlated. Thus, 

when is not block-diagonal, the first step taken should 

be the implementation of a joint test which is achieved by 

testing for a non-zero intercept in a SUR regression model.
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3.6 Moment Restriction Tests for Duration Models

3.6.1 Test. Against a Parametric Alternative 

In order to test for both neglected heterogeneity and 

functional form misspecification within a generalised gamma 

distribution, the set of moment restrictions for a Weibull 

model are:

m(y,0) =
m 1(y, 0) e2 - 2

m2(y,e) H ■—■Q-1<*)
1

(3.6.1)

Using the notation defined above, the test of the moment 

restrictions, specified above, can be implemented as:

where r = (1/N) £m(y,0), and (see Appendix 3B)

4-4q -l+2q

-l+2q <p' (2) -q
(3.6.2)

Note that this test is the same as the score test developed 

within the generalised gamma model.

3.6.2 Test based on an Unspecified Alternative

Tests based on specified alternatives have a limitation in

that they restrict the alternative and hence may not have
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good properties when the specified alternative is also 

incorrect. For instance, if the restricted alternative is a

heterogeneous Weibull model, the heterogeneity test will not

be valid test if the restricted alternative is incorrect. 

Here, it is suggested that a joint test of all moment 

restrictions of € should be used rather than a test of the 

second moment only. Such a test has the merit of being 

based on an unspecified alternative and thus is not 

restrictive in any way. Given any parametric model, the 

integrated hazard function has a unit exponential

distribution under the null, and hence its moment

restrictions must be satisfied if the model is correctly 

specified. Here it should be pointed out that there is no 

statistical justification why the higher order moment 

restrictions of e should be preferred to that of any other 

choice of a generalised error. Furthermore, higher order 

moments of e may not be estimated efficiently from a given 

sample. However, it is argued that if the first few moment 

restrictions are satisfied, the higher order moment 

restrictions are expected to hold as well. One can resort 

to higher orders if the sample size is sufficiently large.

Kiefer (1985) and Sharma (1989) develop score tests for the 

exponential and Weibull models respectively. The tests they 

derive are based on Laguerre polynomials and amount to 

testing for moment restrictions of higher orders of and
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functions of generalised residuals, e. Here, a more 

transparent version of these tests is given that consists of 

computing the integrated hazard function, e, and testing its 

moment restrictions using the Tauchen-Newey framework. The 

advantage of this form is that it can be used for any 

parametric distribution, not restricting to the exponential 

and Weibull distributions only.

In order to test for the first four moment restriction of e, 

the auxiliary criterion function is:

(3.6.3)

m,(y,0 ) - 2

m(y,e) = m 2 (y,0 ) = 6 3 - 6

m 3 {y,0 ) 1 fsj

Therefore, in order to implement the test the following can 

be derived (see Appendix 3B):

v™  - v ' v *  =

4-4q 36-30q 288-208q

36-30q 3 6  0-2 2 5q 3168-1560q

288-208q 3168-1560q 30528-10816q
(3.6.4)

Tests for an exponential specification can similarly be 

derived. In order to test for the same moment restrictions 

of e=fjLt, for an exponential specification, the variance- 

covariance matrix of the moment restriction is:
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4 36 288

36 360 3168 (3.6.5)

288 3168 30528

Tests of moment restrictions of various orders of e are 

applied to Kennan's Strike data (see Table 3.6 and 3.7). It

is inferred that even though the tests for lower order 

moment restrictions do not imply any misspecification, 

results change when higher order moment tests are 

implemented. For example, when the second, third and fourth 

moment restrictions are tested jointly, the test results in 

the rejection of a Weibull specification.

All the above mentioned tests are derived by taking 

expectations of the relevant quantities under the null. As 

mentioned earlier, if it is not possible to take 

expectations analytically, sample moments can be used to 

derive the test. This method has the added advantage of 

computational ease. Such a test is especially appealing 

when the data consist of censored observations and it is not

possible to obtain expectations without specifying the 

censoring mechanism. However, since in the given sample all 

observations are complete, tests based on the sample moments 

are not carried out.
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3.7 conclusion
In this chapter it has been shown that a partial test of 

heterogeneity (functional form) is quite misleading in the 

presence of functional misspecification (neglected 

heterogeneity). Score tests for the functional form 

misspecification of the hazard function, along with 

neglected heterogeneity, are developed for the Weibull and 

exponential models. Partial tests are shown to be 

asymptotically correlated within a heterogeneous generalised 

gamma model, and thus the nominal size and power of any 

partial test is affected by the presence of the other 

misspecification. An empirical illustration based on 

Kennan1s strike data is presented which provides evidence 

that incorrect inferences can be drawn due to the use of 

partial tests. it is, therefore, stressed that the first 

step in model evaluation should always be to implement a 

joint test as more than one source of misspecification may 

exist in any given model.

Moreover, tests of misspecification are interpreted as being 

tests of conditional moment restrictions. Conditional 

Moment restriction tests, developed by Tauchen and Newey, 

are discussed and such tests are developed in the context of 

exponential and Weibull models. Again, it is inferred that 

misspecification is detected only when the joint test is 

implemented on the higher order moment restrictions of e .
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TABLE 3.1
SCORE TEST RESULTS FOR AN EXPONENTIAL MODEL

Restrictions Test Statistic p-Value

o 1 = 0 0 . 156109 0.6928

a = 1 0.439033 0.5076

k = 1 0.092015 0.7616

Q II O ft It M 
; 1

0.476700 0 . 7879

a 1= 0 , k=l 0.161478 0.9224

a=l, k=l 2 . 455930 0.2929

cr" = 0  , a=l, k=l 13 .445637 0.0038

TABLE 3.2
SCORE TEST RESULTS FOR A WEIBULL MODEL

Restrictions Test Statistic p-Value

oII 0.014199 0.9051

k = 1 2.009156 0.1564

a 2— 0 , k=l 11. 870698 0.0026
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TABLE 3.3
SCORE TEST RESULTS FOR AN EXPONENTIAL-GAMMA MODEL

Restrictions Test Statistic p-Value

a = 1 0.353771 0.5520

i—1IIx 0.010174 0.9197

a=l, k=l 47.390425 0 . 0 0 0 0

TABLE 3.4
SCORE TEST RESULTS FOR A WEIBULL-GAMMA MODEL

Restrictions Test Statistic p-Value

k = l 51.398681 0 . 0 0 0 0
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TABLE 3.5
SCORE TEST RESULTS FOR A GENERALSIED GAMMA MODEL

Restrictions Test Statistic p-Value

oIIr* 60.056180 0 . 0 0 0 0

TABLE 3.6
PARAMETER ESTIMATES UNDER ALTERNATIVE MODEL SPECIFICATIONS

Variable Exponent ia1 Weibull Generalised Gamma

Constant -3 . 7826 -3.6936 -2.0585
(0.0421) (0.1638) (1.2168)

X 2.5072 2.4605 1.8379
(0.8539) (0.8706) (0.8060)

a 0.9789 0. 7125
(0.0385) (0.1913)

k 1.7125
(0.7975)

Log-Lik. -2698.420 -2698.20 -2696.619
Value

* Standard Errors in parenthesis.
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TABLE 3.7
MOMENT RESTRICTIONS TEST RESULTS FOR AN EXPONENTIAL MODEL

Restrictions Test Statistic p-Value

e2= 2 0.156109 0.6928

e2= 2 , € 3 = 6 4.724089 0.0942

e2-2 , €3= 6 , e4=24 7.388818 0.0605

TABLE 3.8
MOMENT RESTRICTIONS TEST RESULTS FOR A WEIBULL MODEL

Restrictions Test Statistic p-Value

r>j II to 0.014199 0.9051

€2= 2 , e3 = 6 4 . 488741 0.1060

e2= 2 , e3= 6 , €4=24 10.727937 0 . 0133
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Appendix 3A
In this appendix, the theoretical information matrix 

required to implement the score tests for a Weibull 

specification is derived. The likelihood function, given by 

(3.2.6), based on the heterogeneous generalised gamma 

function is:

N
L = E lj where 

i=l

1 , = klog(Mj) + log (or) + (ak - l)log(tj) - e i - log T(k)

+ log[1 + (a1 /2)<k(k-l) - 2kej+ (e,)3 }]. (3A.1)

Here e = /ita and ^ = exp(Go + ^B.,) . It is assumed, without 

loss of generality, that EfX,) = 0 and E f X ^ ' )  = fl where Cl

is a is non-singular (kxk) matrix. Therefore:

E (X) = [1 0k] and:

E(XX') = 1 0
o n ( 3 A . 2 )

The information matrix under the null can be derived using

the fact that when the model is correctly specified, e has a

unit exponential distribution. This result implies that:

E(ej) = j I . (3A. 3)

Furthermore, the following results can easily be derived:

E [log(e)er 1  / r(r)] = 0 (r) (3A.4)
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E [ (log (e ))2 er 1 / r (r) ] = 0 '(r) + (0 '(r) ) 2 

0 (z+l) = <p( z) + 1 /z 

0 '(z+1 ) = 0 '(z) - 1 /z 2

( 3 A . 5 ) 

( 3 A . 6  ) 

( 3 A . 7 )

where for r > 0, 0 (r) is the digainma function <51og T(r)/ 6 r 

and 0 '(r) is the triganuna function <52 log r(r)/<5r2 (see 

Lawless (1982)).

Using (3A.2)-(3A.7), the components of the information 

matrix, evaluated at a 2 = 0  and k=l, can be derived as:

•E (<5 2 l-/6o2 So2 ) = (1/4) E (4 € 2 + £ 4 - 4€3) = 2.

-E (62 l y S o 2 6 k) = ( — 1/2) E ( 1 - 2e) = 1/2.

- E (<S2 1-/So2 6 G ' ) = E (£ - e2 ) E(X') = [-1 0k].

- E (cS2 1 ■ / So2 6a) = E ( ( £ - £ 2 )log(t))

= (1 /a) (6 0 - 0 (2 ) - 1 ) .

-E (S2 l / 6 k 2 ) = E(0 ' (1)) = 0 * (1) .

-E(<52 l/tfkiG') = E(-X') = [-1 0k].

-E (6 2 1 j / <5k6a) - E(-log(t)) = (l/a)(Go - 0(1))

-E ( 6 2 1 j/ <Sa2 ) = (1/a2 ) + E(£log(t)2)

= (1/a2 ) [ 1 + 0  * (2) + G/nG, + (3q - 0 {2 ) ) 2 ] . 

■E(S2 l {/ S a S R ’) = E ( e log (t ) ) E (X 1 )

= (1 /a) [0 (2 )-Go -G, «n] .

( 3 A . 8  )

( 3 A . 9)

(3A .1 0 )

(3A.11) 

(3A.1 2 ) 

(3A .13) 

(3A .14)

(3A.15)

(3A.16)

-E (<S2 1-/6&6R' ) = E(e)E(XX') =
0
n (3A.17)
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Using (3A.8) - (3A.17), the components of the information 

matrix, with 8 . , 1 = (a2 k) and e2' = (30 ^ ' a) , can be 

derived as follows:

H u  =N

2 1/2
1/2 0 '(1)

(3A.18)

=N

- 1  0  - 1 /a(m+ 1 )

- 1  0  -l/a(m+l)

where m = 0(2) - 6  and N is the sample size.

(3A.19)

Also, the inverse of I22 can be found as:

1 +m 2 q -mq6 1 ' —amq

-mqfi1 n ’1 + qft13 1 ’ aq3 1

-amq 1 a 2 <3
(3A.2 0 )

where q = 1 / 0 '(1 ).

Therefore, the partitioned inverse needed to compute the 

score test can be found as:

[I1 1 ] ' 1 = N
i-q
q- 1 / 2

q- 1 / 2  

0 '(2 )-q
(3A.21)

The information matrix needed to compute the score tests for 

an exponential specification can similarly be derived.
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Appendix 3B
In this appendix, conditional moment restriction tests are 

derived where the variances of the moment restrictions are 

based on their expected values evaluated under the Weibull 

specification. The results specified in (3A.2) to (3A.7) 

are again used to derive these expressions. Let the set of 

moment restrictions be:

m ( y ,©) =
m-| (y, e ) £2 - 2

m2 (y , 0) €, * 0 ( D

where e = ^t“ and e1 = log(e). Using the notation defined 

in Section 5, the relevant components of the variance- 

covariance matrix can be derived as follows:

Var(m,) = E(e4 + 4 - 4e 2 ) = 20.

Var(m2) = E ( l n ( £ ) ) 2 - (0(1) ) 2 =<*>'(!) 

cov(m 1m2) = E(e 2 ln(e)) - 20(1) = 3. 

Therefore,

( 3 B . 1) 

(3B.2) 

(3 B .3)

V _  =
20
3

3

0' (1)
(3B.4)

Also:
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d =
61,/6BQ ( 1 - e ) r  d i i61,/6B, — ( 1 - e J X , = d2
61,/ 6 a ( 1 - e ) I n ( t ) + 1 / a d3

(3B.5)

Using the above, the following can be derived:

E (m1d1) = E< (e2 -2) (1-e) ) = - 4 .

E(m,d2) = E ( (e2 —2 ) (1-e ) ) E(X,) = 0k.

E(mid3) = E ( (e2 — 2 ) (l-e)ln(t)) = - (4/a)(m+1/2).

E (m2d1) = E((ln(e)-0 (l))(1-e)) = -1.

E(m 2d2) = E((ln(e)-0(l))(1-e))E(X,) = 0k.

E(m2d3) = E((ln(e)- 0 (l)) (l-e)ln(t)) = (l/a)(l-m)

These expressions are used to derive:

(3B.6 ) 

(3B.7) 

(3B.8 ) 

(3B.9)

(3 B .1 0 ) 

(3 B .1 1 )

=

-4 0 -

- 1  0

4 (m+.5) 
a

-l(m-l) 
a —

(3B.12)

Moreover, the inverse of H = -E (<52 1-/&Q&Q 1 ) is

H-1
1 +m 2 q 

-amq

-mq/31 1 

n'1 + qfl1fi1 ' 
aqB, '

-amq 

aq3, 

a 2 q

(3B.13)
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The test of the above specified moment restrictions can be 

implemented as:

N ?,CV„ - V^H'VaJ 1  f

where r = (1/N) £m(y,0), and:

-
4-4q -l+2q

-l+ 2 q 0 '(1 )- 1 -q
(3B.14)

Tests of higher order moments of e that are based on an 

unspecified alternative can similarly be derived.

m, (y ,6 ) € 2 - 2

Let m(y,0) = m 2 (y,9) = e3 - 6

m3(y ,0 )
_ €‘ - 2iJ

The relevant components of the variance-covariance matrix 

are:

Var(m2) = E (e6 + 36 - 12e3) = 684

Var(m3) = E(e 8 + 576 -48e4) = 39744.

Cov(m 1m2) = E(e 5 - 6 e2 - 2e3 + 12) = 108.

Cov(m 1m3) = E(e 6 - 24e2 - 2e4 + 48) = 672. 

Cov(m 2m3) = E (e7 - 24e3 - 6 e4 + 144) = 4896

(3B.15) 

(3B.16) 

(3B.17) 

(3B.18) 

(3 B .19)
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Etnijd,) = E( (e3-6) (1-e) ) = -18.

E(m 2d2) = E( (e3 - 6 ) (l-e))E(X1) = ok.

E(m2d3) = E( (e3- 6 ) (1-e) ln(t) ) = - (18/a) (m+5/6) 

E (irijd,) = E( (e4-24) (1-e) ) = -96.

E(m3d2) = E( (e4-24) (1 -e) )E(X,) = Ok.

(3B.20) 

(3B.21) 

(3B.22) 

(3B.23) 

(3B.24)

E(m3d3) = E( (e -24) (1-e) ln(t) ) = - (96/a) (m+104/96) . (3B.25)

These expressions, together with the ones derived earlier, 

can be used to compute the following:

V_ =

V.md

2 0 108 672

108 684 4896 (3B.26)

672 4896 38744
-

-4 0 -4 (m+1/2) 
a

-18 0 -18 (m+5/6) 
a (3B.27)

-96 0 -96 (m+104/96) 
a

Therefore, to implement the test the following can be 

derived:
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-1,- VmdH 'V* =

4-4q
3 6 —3 Oq

36—30q 

360 — 22 5q
288-208q 
3168—1560q

288-208q 3168-1560q 30528-10816q

(3B.28)

Conditional moment tests for an exponential model can 

similarly be derived.
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CHAPTER 4

ADJUSTED SCORE TESTS FOR DURATION DEPENDENCE 
AND UNOBSERVED HETEROGENEITY

4.1 Introduction
The validity of separate separate tests of a particular 

parametric restriction depends on the validity of additional 

restrictions not being tested at that step. As a result, 

this chapter is devoted to a discussion of testing for 

sources of misspecification individually when several such 

sources exist concurrently. An alternative method to 

separate tests, is to start with a joint test, of all 

relevant restrictions, that has power aginst several forms 

of misspecification . 1 The non-centrality parameter of such 

a test will be at least as large as that of any separate 

test. However, the asymptotic power of a joint test may be 

lower due to higher degrees of freedom. Moreover, simply 

rejecting the joint null offers no information to respecify 

the model appropriately. For this reason, some additional 

information from separate tests is needed.

The standard separate tests which have been proposed to date 

may be unhelpful in this regard when these tests are 

asymptotically correlated with each other. In this chapter,

1 see Chapter 3 of this thesis.
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adjusted separate tests are proposed that may be used to 

gain some additional insight regarding the source of 

misspecification. Three types of score-based tests for 

testing the hypotheses of no neglected heterogeneity and no 

duration dependence are comparared in the context of the 

heterogeneous Weibull model. These tests are the separate 

and joint tests for two parametric hypotheses, and the 

conditional or adjusted score test for testing a single 

separate hypothesis.

Let L(e) be the likelihood function where 9 = (©.,,©2,©3) 1 is 

the set of parameters. Without loss of generality, let 

Ho1: ©, = 0 and Ho2: © 2 = 0 be the two separate hypotheses and 

Hq1 2: = e 2 “ 0  *-*e the j°int hypothesis. Further, suppose
that r1f r2 and r l2 are score tests for Ho1, H o2 and Ho12 

respectively. The objective is to carry out a specification 

search for selecting the most appropriate of the models 

considered.

The three possible approaches are examined as below. In the 

first, Ho1 or Ho2 are tested for separately, assuming the 

truth of the other. The model is generalised if the test is 

significant . 2 A difficulty with this approach arises when 

and t2 are stochastically dependent. Each separate test

2 Wooldridge (1989b) refers to such a procedure as the 
"bottom-up" approach.
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will in this case offer no information regarding the 

particular misspecification being tested for. As a result, 

the separate tests should only be claimed as general 

misspecification tests and not directed at any particular 

misspecification. However, under this interpretation a 

significant test can not suggest direction for 

respecification. Further, this approach may lead to a model 

which is either over- or under-parametrised, a common 

presumption being that over-parametrisation is more likely.

A second approach is to test the joint null and hence, the 

possible correlation between the separate tests is dealt 

with directly. A more general model may be inferred if t12 

is significant. However, if only a subset of the joint 

hypothesis is false, this approach will lead to over- 

parametr isat ion . Further, as shown by an example later in 

the chapter, the joint test may have low power for some 

parameter configurations against certain local alternatives.

A third approach is to test each of the two separate 

hypotheses without assuming the truth of the complementary 

hypothesis. That is, separate tests are constructed which 

allow for the dependence of the test on nuisance parameters. 

Two methods can be used in order to implement this test. 

Firstly, a more general model than implied by the joint
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hypothesis can be fitted as in the least squares regression 

based Neyman1s C(a) test in Section 4.5 or, as in Section 

4.4 of the chapter, the scores estimated under the joint 

null can be "adjusted" for the nuisance parameter. In each 

case the score test will be based on quantities that are 

refered to as conditional or adjusted scores. This approach 

is asymptotically equivalent to separate tests when the 

joint null is true. Further, the example of the 

heterogeneous Weibull model considered in this chapter shows 

that the adjustments to the separate tests are easy to 

compute and lead to better tests than the other two 

approaches.

The rest of the chapter is organised as follows. In Section 

4.2, a simple but general exposition of variants of the 

conditional score approach is provided and contrasted with 

the standard approach. A joint score test for duration 

dependence and neglected heterogeneity is derived within a 

heterogeneous Weibull model and is contained in Section 4.3. 

The non-null distribution and the conditions under which the 

test has a low power are considered. The analysis is 

further extended to derive the tests within a heterogeneous 

generalised gamma distribution. In Section 4.4 the approach 

of Section 4.2 specialised and used to develop conditional 

score tests for heterogeneity and duration dependence based 

on the restricted maximum likelihood estimates derived under
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the joint null hypothesis. In Section 4.5, the robust 

conditional test for heterogeneity is suggested that uses a 

variant based on least squares estimates of the Weibull 

regression model. This latter approach is essentially an 

application of the Neyman's C(a) principle. Rather than 

restricting nuisance parameters to their hypothesised 

values, consistent, though inefficient, estimates are used 

to implement the OLS-based C(a) test. As a result, the test 

is robust. A Monte Carlo analysis of the conditional score 

tests along with the joint and standard separate tests is 

reported in Section 4.6. Finally, Section 4.7 contains the 

summary and concluding comments.

101



www.manaraa.com

4.2 Conditional {Adjusted) Score Tests
In conducting separate score tests of subsets of parametric 

restrictions, one typically assumes the validity of other 

auxiliary restrictions. This method can have misleading 

consequences if the auxiliary restrictions are not valid.

In duration models it is common to assume that the 

functional form of the model is correctly specified when 

testing for neglected heterogeneity. The heterogeneity test 

may be correlated with the test of functional form 

specification and hence may lead to erroneous conclusions 

when the functional form of the model is incorrect. In 

contrast, conditional (adjusted) score tests suggested in 

this section do not suffer from this limitation as a 

correction is made to compensate for the effect of the 

violation of the auxiliary assumption.

Let 9 = [©,' 92' ] ' be the vector of k parameters to be 

estimated, and 9, and 92 have k, and k2 elements 

respectively. Let L denote the log-likelihood function and 

s1(Q) = dL/d©, and s 2 (9) = dL/d © 2 denote the score vectors.

Let 1(9) = -E[dJL / d©d©1] denote the information matrix and 

let s(90) and I( 0 O) denote the score vector and the 

information matrix respectively, evaluated under the null 

hypothesis. It is known that under the standard regularity 

conditions, the score vector has a multivariate normal
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distribution,3 that is:

N 1/2
Si(0o)

- n o, 1 I(0O) (4.2
S2(0o> N

where:

1(9) = - 1 1

- 2 1

12

L22

and N denotes the sample size,

Let the null hypothesis be:

Ho : 9 1 = 0 1o* (4.2.2)

The score test of the null hypothesis is:

11LM = s 1 ' (0O) I (0O) s, (0O) (4.2.3)

where (~) denotes that the quantities have been evaluated at 

the restricted MLE of 0 and I 11 = [In - l1 2 (l2 2)'1I21 ] ' 1 is the 

partitioned inverse of 1(0). The given test statistic has a 

chi-square distribution under H0 with k 1 degrees of freedom. 

The random variable, given by (4.2.3), has a chi-square 

distribution because it is based on the following marginal 

distribution result:

3 see Breusch and Pagan (1980), Engle (1982, 1984), Godfrey
(1988) etc..
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s , ( e o ) -  n  [ 0 ,  ( i 1 1 ) ' 1 ] - (4.2.4)

In order to implement diagnostic tests for misspecification, 
one can also use the results of the conditional normal 

distribution where the random variable s 1 (0 ) is conditional 

on the realised value of s2 (e) = c2. Using (4.2.1), the 

following can be derived as:

(S,|s2=c2) ~ n [ I 12 (I22) 1c2 , (I11)'1]. (4.2.5)

Define the conditional score as the quantity:

Si — (s.j|s2— c2) — ^12^22^ <"2 (4.2.6)

where the second term on the right-hand side is the

"adjustment" whose effect may be interpreted as purging

s 1 (9) of the correlation with s2 (9). The adjusted score s,,*

= s, if I12 = 0. The adjusted score may also be interpreted 

as the residual from the regression of s, on s2.

The conditional separate score test of H 0 is based on the

quadratic form:

LMC(9) = s/'fej I 1 1(0O) s,*(e0). (4.2.7)

The quadratic form (4.2.7) may be interpreted as a 

conditional test generating equation, the value and the 

properties of the test being dependent on the choice of the 

estimator for the nuisance parameter 02. Consider three
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possible choices. First, if 92 is estimated without 

restrictions, then c2 = 0  by the first-order condition of 

maximising the likelihood function, namely <5L/<S02 = 0. 

Consequently, the conditional and unconditional scores will 

be identical. If © 2 or some component of it is restricted, 

then, in general, c2 does not equal 0 , but is approximately 

zero if the restriction is satisfied. Second, if the 

previous alternative is computationally demanding but the 

root-N consistent estimate of ©2, denoted by 9n, is easy to 

obtain, then the test statistic may be evaluated at that 

point. The test will be asymptotically equivalent to the 

first alternative and will not depend on the distribution of 

©n.

The third alternative is relevant when the root-N consistent 

estimate of 0 2 is also not available. Here (4.2.7) is 

evaluated at the restricted maximum likelihood estimator, 

where the restrictions comprise the auxiliary restrictions 

in addition to the ones being tested. This test is only 

valid under the joint null, however, in this case, the 

separate tests will also be valid. Nevertheless, it is 

cheap to compute this test along with the joint test, and it 

has the merit of having been derived under a more general 

alternative. Moreover, it includes the adjustment factor 

for correlation between the scores, even though the 

adjustment is done under the restricted joint null. Unlike
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the first two alternatives, the properties of this test will 

depend on ©2.

The conditional score test of the null hypothesis based on 

9n is defined by:

LM^e") = s * ' ( e n) I1̂ ©") s/f©"). (4.2.8)

The test defined by (4.2.8) is known as the Neyman C(a) 

test.* Traditionally the test has been motivated by 

computational considerations since the root-N consistent 

estimate of © under the null is often easier to obtain than 

the maximum likelihood estimate required for the score test. 

Hence, the test is sometimes dubbed the "pseudo-score test".

Another variant of the conditional score test, described 

above, is derived as follows:

LMC (©) = s * ’(©) I1:L(©) s* (0 ) . (4.2.9)

To reiterate, this test is based on the restricted maximum 

likelihood estimates derived under the joint null 

hypothesis. The test is algebraically similar to the C(a) 

test and has the same properties as LMc(©n) under the joint 

null. The use of this test is motivated by the fact that

4 The C(a) test is discussed in the statistical literature by 
Neyman (1959) and Moran (1970). For references in the 
econometrics literature see Breusch and Pagan (1980), Engle 
(1984), Holly (1987), and more recently Wooldridge (1989a).
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some nuisance parameters may not be easy to estimate using 

maximum likelihood methods. Hence, these parameters are 

restricted to some hypothesised value using auxiliary 

restrictions. However, even though the nuisance parameters 

are restricted, the correlation of the score corresponding 

to the nuisance parameter with the relevant score of the 

parameter that is being tested is allowed for. These 

ajusted score tests, therefore, are expected to outperform 

the standard separate score tests when the auxiliary 

restrictions are not valid in a given model.
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4.3 Joint Testa of Heterogeneity and Duration Dependence
The problem of distinguishing between genuine duration 

dependence and the spurious duration dependence induced by 

neglected heterogeneity is discussed in Salant (1977), 

Lancaster (1979) etc . 5 Even if every individual case in the 

sample has constant hazard, implying no duration dependence, 

neglected heterogeneity induces the appearance of a 

declining hazard rate. This problem of identification 

results in distortions of the standard separate tests. It 

can be seen in Jensen's (1987) Monte Carlo evidence that 

positive duration dependence is negated by the spurious 

negative duration dependence due to neglected heterogeneity. 

As a result, the standard separate tests pick up no 

misspecification even though both sources of 

misspecification exist. Moreover, a test of duration 

dependence is also sensitive to any evidence of neglected 

heterogeneity and vice-versa. Based on the outcome of this 

test, one may generalise the model to incorporate duration 

dependence when, in reality, the problem is of neglected 

heterogeneity.

There exists a non-zero correlation between tests of 

heterogeneity and duration dependence that results in 

distortions in the standard separate score tests. In this 

section, joint score tests based on a locally heterogeneous

5 see chapter 2 and 3 for details.
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Weibull model that allows for both heterogeneity and 

duration dependence are developed . 6 The analysis is further 

extended to consider a more general heterogeneous 

generalised gamma distribution. For both cases, an analysis 

of the non-centrality parameter of the joint test is 

provided.

4.3.1 Heterogeneous Weibull Model

Consider a locally heterogeneous Weibull model with 

uncensored observations, whose joint likelihood is:

L = S log(a) +- (a - l)log(t) + log(^t) - e

+ log [ 1 + ai (C - 2 e) ] 
2 -

fi = exp(XB) = exp(Bo + X,,^) and e = fj,ta.

(4.3.1)

(4.3.2)

Here X, is a (kxl) vector of exogenous variables, and 

without loss of generality it is assumed that X = (1 X.,)

and EfX.,) = 0, implying that:

E (X) = [1 0J and E(XX') =
1
0

0
n (4.3.3)

Also, e is a generalised error in the sense of Cox and Snell 

and has a unit exponential distribution if the model is 

correctly specified. The duration dependence parameter is 

a; a < 1 implies negative duration dependence and a > 1

see Jaggia and Trivedi (1989).
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implies positive duration dependence. The heterogeneity 

parameter is a 2 ; a 2 > 1  implies neglected heterogeneity in 

the model.

The Joint Score Test

The joint test of no neglected heterogeneity and no duration 

dependence constitutes the null hypothesis:

Hq: a 2=0 and a=l. (4.3,4)

Let 9 = (9, ' 92') ' where:

0 ,' = (a2 a) and 92' = (0 O B, ' ) .

The elements of the score vector, s, (©o) , evaluated under

the null hypothesis given by (4.3.4) are:

dL
da 2 H.

1 E[ e2
2

~ 2 6 ] = Sl1 (9o) (4.3,5)

dL
da H

= E [ 1  + (1 -e) log(t) ] = s 1 2 (0 o) (4.3,6)

Furthermore, the information matrix I(90), evaluated under 

(4.3.4), can be derived as:

1 (0n) = N

(Bo- 0 ( 2 ) - l )

X 22 (0 o)

- 1

0(2)-Bo
1

*

(4.3,7)

w h e r e :
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r22 (©o) = 1 + «'(2) + (0(2))J + + V nifil - 20(2)ftc

and 0 (r) = dloa rfr) is the digamma function and
dr

< p ' (r) = d 2 log r ( r )  is the trigamma function. 
dr 2

The joint score test statistic for heterogeneity and 

duration dependence is:

LMhd = s/  (0„) l11(§o) sJ 0o)

where, using (4.3.7):

( I 1 1 ) ' 1 =
ai1 ai2

°21 °22
= N

1

- 1

- 1

0 ' (1)
(4.3 .8 )

Therefore,

I1 1 (6 0) = (0 ' (1 ) - 1 ) 1
N

0 ' (1) 
1

1

1
(4.3.9)

Observe that the matrix in (4.3.9) does not depend upon any 

unknown parameters.

Non-Centrality Parameter

The fact that spurious duration dependence cancels out 

genuine duration dependence, has an effect on the power of 

the joint test. Using (4.3.4), the null hypothesis is:
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Ho: e i = e io' where:

a 2
a

and e lo = 0
1

Let the sequence of alternative hypotheses be given by:

Ha: el0 + N 1/2 5, where S = (3 .10)

Then, asymptotically, LMhd, based on a heterogeneous Weibull 

distribution, is distributed as X 2 (2 , t)7, where the non­

centrality parameter t is:

r = 1 <5 ' (I11) ' 1 6  
N

(4.3. 11)

which, after incorporating (4.3.8) is:

= 6y2 - 2 6,62 + 0' (1)

It is also noted that:

(4 . 3.12)

r (a = 1 ) = N(a 2 ) and

T (a2 = 0 )  = N(a - 1)0'(1)

(4.3.13)

(4.3.14)

Looking at the negative middle term in (4.3.12), it can be 

seen that certain configurations of values of ct2 and a will 

make the non-centrality parameter small, thus indicating

7 see Cox and Hinkley (1974)

112



www.manaraa.com

reduced local power of the joint test. For both 6 1 and &2 

positive, implying the presence of positive duration 

dependence as well as neglected heterogeneity in the data, 

the power of the joint test will be reduced against local 

alternatives. It is readily seen that the minimum value of 

r :

min r = t (&2 = ,/0'd)) = 6/(1 - 1/0'(1)) (4.3.15)
(62>0 )

may still be high if 6 / is large. On the other hand, when 

a < 1 , that is, there is negative duration dependence, the 

power of the joint test is increased. Therefore, the co­

existence of positive duration dependence and neglected 

heterogeneity poses a problem for the joint as well as the 

standard separate tests since the power of the former is 

reduced and the latter is invalidated. This problem may 

lead the researcher to under-parametrise the model. The 

presence of heterogeneity along with negative duration 

dependence, however, enhances the power of the joint test.

4.3.2 Heterogeneous Generalised Gamma Distribution 

The use of a Weibull distribution, to allow for duration 

dependence, may not always be appropriate. When the 

assumption of a constant hazard rate, implied by the 

exponential distribution, is found to be incorrect, the 

correct specification may still not be captured by a Weibull 

model. The exponential assumption can be relaxed by
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selecting distributions like gamma, Weibull, lognormal etc. 

Pereira (1978), using Cox's (1961, 1962) approach for

testing non-nested hypotheses, develops tests to 

discriminate between log-normal, gamma, Weibull and 

exponential models. This approach, however, becomes 

intractable when heterogeneity is allowed for.

Another means of discriminating between the above-mentioned 

parametric models is to use the encompassing approach. As 

seen in Chapter 3, the generalised gamma distribution 

encompasses all of the above mentioned distributions and 

also accommodates non-monotonic hazards. Even though it is 

difficult to estimate parameters of this distribution, it 

can be used to derive score tests since only the null model 

needs to be estimated to implement such tests.

Using the results and notation defined above and in Chapter 

3, the log-likelihood function of a heterogeneous 

generalised gamma distribution is:

L = £ klog(M) + log(a) + (ak - l)log(t) - /xt* - log (T(K)

+ log[ 1 + (a1/ 2)( k(k-l) - 2kjxt“ + (Mt“)2 )j] (4.3.16)

The Joint Score Test

The joint test of neglected heterogeneity (a2 =0) and 

duration dependence (a=l and k=l) implies the null
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hypothesis:

Hq: ct2 =0, a = l and k=l. (4.3.17)

The elements of the relevant score vector, s, (0O) , are:

(4.3.18)dL
do 2 H

1 Z[e 2 - 2 e ] = sn (0 o)
2

dL
da H,

= S [ 1  + (l-e)log(t)] = s 1 2 (0 o) (4 . 3.19)

dL
dk

= £ [ log ( e ) - 0 (1 )] = s1 3 (0 o) (4.3.20)

Moreover, the information matrix, I(0O), evaluated under 

the null hypothesis is:

2 0 o-0 (2 )-l 1 / 2 - 1 0

* *22 (©o) 3Q-0(1) 0(2)-30 -3,

N * * 0 ' (1 ) - 1 0

* it * 1 0

■k * * * n

where, as before:

^(©o) = 1 + 0 '(2 ) + (0 (2 ) > 2 + v  + »i'¥i "

(4.3.21)

The Joint Score test can be derived using the standard 

result given by (4.2.3), namely:

11
L M h d  =  V  (©o) 1 (0 o> s 1 < e o)
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where:

(I11) 1 = N

1 -1 -1/2
- 1  0 '(1 ) 1

-1/2 1 <P' (2)

(4.3.22)

Non-Centralitv Parameter

In order to derive the non-centrality parameter of the test 

based on the generalised gamma distribution, let the 

sequence of local alternatives be:

Ha: 01o + N ’1/2 6 , where:

a 2 = 0

S2a = 1 and 6 =
k = 1 *3

Then, asymptotically, LMhd is distributed as X' (3,r), where 

the non-centrality parameter r is:

7 = 1 6 '  (I11) '1 6
N

= 6,2 + 6-/0'(l) + 6 3 3 (0' (1)-1) - 26,6., - 2 6 , 6 3  + 26263. (4.3.23)

The non-centrality parameter of the joint test of three

restrictions is at least as great as that of the test of two 

restrictions. However, the asymptotic power of this test 

may be smaller due to higher degrees of freedom.
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4.4 Adjusted Score Testa for Duration Models
As mentioned earlier, the conditional (adjusted) score tests 

are used to identify the exact source of misspecification. 

Due to the existence of non-zero correlation between 3 ^( 0 ) 

and s 1 2 (0 ), the separate tests proposed in the literature

are of little use. The adjusted score tests are founded on

the known distribution of one score conditional on the 

realised value of the second score. This approach is 

different from standard test procedures in which the value 

of the second score is ignored. Thus, for example, consider 

the distribution of sn , conditional on the realised value 

of s12, say c12. Using the results from Sections 4.2 and

4.3,

(s„ |sl2=c12) ~ n

The conditional test of heterogeneity:

= Q S1l(9o> “ (al2/a22> -12(e0) ^ 2

an - (ai2)!/o22

= r sii(® o ) + (1/0*(i)) c12(0o)-|2
*— ____________________________ — 1 . (4.4.2)

N(1 + 1/0'(1))

Similarly, the conditional duration dependence test is:
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l m? = rsi2<§o) + c.<<§°>Y—  _______________  —  • (4.4.3)

N ( 0 '(1 ) - 1 )

Relationship Between Adjusted and Standard Tests 

By ignoring the correlation between sT1 (0o) and s12(9 ), 

separate test statistics, as used in the literature, can be 

derived. The test of heterogeneity is:

LMh = [Sn(0o) ] 2 = [sn (0o ) ] 2 (4.4.4)

which is similar to the test proposed by Lancaster (1983). 

Analogously, a partial test of duration dependence is:

LMd = [s1 2(0 o ) ] 2 = [s1 2 (0 o ) ] 2 (4.4.5)

N0> (1)

which is the duration dependence test derived by Jensen 

(1987). Both LMh and LMd are quite appropriate under the 

joint null. The actual size will differ from the nominal 

significance level if the covariance is non-zero. Block 

diagonality of I11 (9°) is a necessary and sufficient 

condition for the joint test to be additive in LM,, and LMd8, 

that is, for asymptotic zero correlation between and

LMd. However, I11 (0O) is evidently not block-diagonal. As

8 Bera and McKenzie (1986)
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seen in Chapter 3, tests which ignore this may be 

misleading . 9 The conditional tests based on the jointly 

restricted maximum likelihood estimator are also appropriate 

under the joint null. However, since they are adjusted for 

possible correlation between sn (9) and s 1 2 (9), they may have 

better performance under the alternative hypothesis.

Usually the joint presence of heterogeneity and duration 

dependence cannot be a priori ruled out. Hence, the joint 

score test has obvious advantages over the standard and the 

conditional separate tests whose nominal size and power will 

be affected by the presence of the second (ignored) 

complication and which can be misleading. On the other 

hand, if the joint null is rejected, one may wish to test 

the component hypotheses. The conditional score tests 

suggested above may be more informative than the standard 

tests in this regard. Further, for some parameter 

configurations the joint test is likely to have low power.

Finally, the conditional heterogeneity test based on the 

heterogeneous generalised gamma distribution, under the 

joint null specified by (4.3.17) can similarly be derived. 

Here the test will be based on the distribution of sn 

conditional on the realised value of s12 and s13. Using 

(4.3.22) the test can be easily implemented.

9 see, also, Jaggia (1990) for an empirical illustration.
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4.S OLS Baaed Cfa) Test of Heterogeneity
The distribution of the conditional heterogeneity test 

developed above, LMch, is independent of nuisance parameters 

only under the joint null. This test may have better 

properties for some parameter values than the standard 

heterogeneity test, LMh. However, its distribution depends 

upon unknown nuisance parameters if the auxiliary 

assumptions regarding those parameters are not satisfied.

We desire a more generally valid and robust test whose 

distribution does not depend upon any nuisance parameters. 

The OLS based test suggested below is such a test and is 

asymptotically equivalent to the test based on the maximum 

likelihood estimates of the Weibull model. This test is 

based on the root-N consistent estimates of the parameters 

and not on the distribution of those estimators. The 

resulting test is robust since the nuisance parameter of 

duration dependence is estimated, though inefficiently, 

instead of being restricted to an incorrect hypothesised 

value.

Since ©' = (©,' ©2'), let ©, = a 1 and ©2' = (a B0 J3,').
In order to base a test of H0: © 1 = 0, root-N consistent 

estimates of © 2 are required. These estimates may be 

obtained through an OLS regression as follows. If t has a 

Weibull distribution, then using y = log(t) we can write:
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y = -XB + w (4.5.1)
a a

= xr + u

- r0 + x,r, + u (4 .5 .2)

where w has an extreme value distribution with E(w) = 0 (1 ) =

-.5772 and Var(w) = 0*(l) = 1-6449, r = B/a an U = w/a.
Hence,

a = sqrt[1.6449 / var(U)]. (4.5.3)

Bq = - aro - .5772. (4.5.4)

B 1 = - ari. (4.5.5)

As r and Var(U) can be consistently estimated using ordinary

least squares, consistent estimates of all the parameters of 

a Weibull model can be obtained.

To construct the C(a) test of heterogeneity, we use the 

expression (4.2.8) given as:

LMc(0n) = s/'(en) I 1 1 (0n) s/(0n)

where s/ = (sJs^Cj) - I12(I22) 1c2 and ©n is any root-N 

consistent estimate of 0 . Note that the score, SL/SSa 2 is 

taken conditional on the realised values of the scores 

corresponding to all the parameters of the model. The test 

can be implemented by substituting the following expressions 

into (4.2.8) :
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dL/dB E[X(l-e)]
dL/da Z[y(l-e) + 1 /a]

1 I 12 = [ - 1  Ok -(m+l)/a] 
N

(4.5.7)

1 ( ^ 2 )N

l+mJ q

-inqfl,

-amq

-raqB, ' -amq

n ’Vqft^' aqft1

aq/i1 '
(4.5.8)

I 11 = N/(l-q) . (4.5.9)

m = 0(2) - Ro; q = 1/0'(1); e = jita. (4.5.10)

The computation of (4.2.8) is achieved by using consistent 

least squares estimates in conjunction with expressions 

defined in (4.5.6) to (4.5.9).
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4.6 Monte Carlo Experiments
The Monte Carlo experiments are performed to compare the 

performance of all the tests described in the last three 

sections. The null hypothesis for all tests is that the 

observations are drawn randomly from an exponential 

distribution with no neglected heterogeneity. All tests 

have been derived in the context of a locally heterogeneous 

Weibull distribution. The performance of six test 

statistics is compared. These tests are LM^, LMd, LM^,

LM^(9) , LM^(9) and LM^(©n) , all of which are based on the 

theoretical information matrix. Note that both

LM^(0) and LM^(9) are evaluated at the restricted maximum 

likelihood estimates derived under the joint null implied by 

an exponential distribution. LMhc(9n), on the other hand, is 

the C(a) test that is based on the consistent estimates 

obtained using least squares including the nuisance duration 

dependence parameter.

4.6.1 Design of Sampling Experiments

The size and power properties of the six test statistics 

mentioned above are evaluated on the basis of twelve 

different data generating processes (models). Each 

simulation experiment is based on 500 replications. The 

parameters (6 Q, 1̂ ) are set at (5.0, 1.0). The variable X, 

is taken as a random draw from a uniform [0 ,1 ] distribution 

and is held fixed for all experiments. The heterogeneity

123



www.manaraa.com

term is denoted by V where log V is a random draw from a 

normal, n( 0 ,a2) distribution implying multiplicative log­

normal heterogeneity. Once the draw corresponding to a 

particular value of a 2 is made, the vector of the 

heterogeneity term is held fixed, to be used with different 

values of a and for all replications. This method reduces 

sample variability between replications and between 

experiments.

Different combinations of a and cr2 are used to generate the 

twelve experiments shown in Table 1. Estimation under the 

joint null (Model 1 ) is done using sample sizes, N = 50, 

100, 200, and 500. Different sample sizes are chosen to 

compare the asymptotic and finite sample distributions of 

the test statistics when the null holds. To make a power 

comparison, the sample size chosen under the alternative 

hypotheses (Models 2-12) is 200. The data generation 

process for Model 1 is exponential and for Models 2-12 is 

either Weibull (a ^  1) or exponential (a = 1) with 

heterogeneity (ct2 > 0 ) or without heterogeneity (a2 = 0 ).

4.6.2 Results of Sampling Experiments

For the correctly specified Model 1, the match between the 

theoretical asymptotic distribution and the actual results 

is good (see Table 2). The C(a) test given by LMhc(©n) 

appears to have relatively thicker tails compared with the
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rest especially for N = 50 and 100. For LMh and LMhd the 

proportion of rejection of the null hypothesis is smaller 

than the nominal level of the test, especially when the test 

is performed at the 10 or 5 percent significance levels.

When the model is correctly specified, all tests perform 

slightly better than the C(a) test.

Table 3 contains the results for Models 2, 3 and 4 which

incorporate duration dependence but not unobserved 

heterogeneity. The data generating process in Model 2 is 

subject to negative duration dependence (a =0.75) and Models 

3 and 4 are subject to positive duration dependence (a =

1.30 and 1.45) . For Model 2 LMh, LMd and LMhd all perform 

extremely well. Thus, the essential misspecification 

arising from negative duration dependence is diagnosed by 

the separate and joint tests. However, LMh is unable to 

distinguish between duration dependence and unobserved 

heterogeneity. The implication of this result is that the 

"heterogeneity tests" proposed in the literature are not 

tests of heterogeneity alone when other sources of 

misspecification are also present. Conditional score tests 

are intended to overcome this problem. Therefore, ideally, 

their rejection proportion should be close to the nominal 

significance level of five percent (it is actually 39.6

percent for LM^(9) and 79.4% for LM^(©n) ) . For LM^(0) 

rejection should be close to 100%, but it is actually 79.4%.
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However, as expected, the performance of all tests 

considered other than the C(ct) test is model dependent, as 

the results of Models 3 and 4 illustrate. Here all 

misspecification tests have high power and all conditional 

score tests perform extremely well, correctly indicating the 

nature of misspecification in a high proportion of cases.

Of course, the C(a) test based on the root-N consistent 

estimates of the parameters including the nuisance parameter 

should perform better than the tests based on the restricted 

maximum likelihood estimator, and it does.

The results are less favorable to the adjusted score tests, 

based on the restricted maximum likelihood estimates, when 

Models 5 and 9 are considered. Here there is some 

unobserved heterogeneity but no duration dependence.

LM^(©) still has high power, but LM^(0) , unfortunately, 

incorrectly identifies duration dependence in 42.2% and 

7 6.2% of the cases, reflecting correlation between the two 

tests.

In Models 7, 8 , 11 and 12, there is unobserved heterogeneity 

and positive duration dependence. It is seen that the 

separate heterogeneity test, LM,, has rather low power . 10 The 

joint test, LMhd has relatively higher power which increases

10 see Jensen (1987) for a similar result.
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with the magnitude of a. The conditional tests based on the 

restricted maximum likelihood estimates also suffer a 

reduction in power for Models 5 and 8  as compared with 

Models 9 and 12. By contrast, the C(a) test of 

heterogeneity is very robust and has higher power in all 

cases. For all values of a, the power of the tests 

increases when the value of a 2 is raised from 0 . 6  to 0 .8 . 

Nevertheless, it is somewhat problematic that there are 

parameter configurations in which all score tests based on 

the restricted maximum likelihood estimator have rather low 

power.

An easily implementable variant of LMhc(8 n) which uses outer 

product of the sample scores, rather than the theoretical 

(expected) information matrix, to implement the test was 

also investigated . 11 The results obtained were rather 

disappointing. The experiments were repeated by increasing 

the sample size to 1000. This change produced some 

improvement in performance, but the test still had low 

power, as compared to the one that is based on the 

theoretical information matrix.

11 Wooldridge (1989) discusses the easily implementable C(a) 
version of the conditional moment restriction tests.
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4.7 conclusion
In this chapter, conditional score tests are motivated and 

developed in the context of duration models. These 

conditional tests are shown to be useful alternatives to 

separate and joint tests of heterogeneity and duration 

dependence. A known limitation of a joint test is that if 

the null hypothesis is rejected, one still needs information 

from separate tests to indicate the nature of the required 

respecification. The standard separate tests may be of 

little help when they are correlated. Bera and Jarque 

(1982) derive a joint test of different restrictions for a 

classical linear regression model. They also suggest the 

Multiple Comparison Procedure in order to identify different 

sources of errors if the joint test results in the rejection 

of the null hypothesis. Their procedure, however, is aided 

by the additivity of their separate tests, implying that all 

tests they derive are asymptotically independent under the 

joint null. So, even when multiple misspecifications exist, 

each separate test is somewhat informative in carrying out a 

search for an appropriate model.

In the given context, the tests of heterogeneity and 

duration dependence are shown to be correlated with each 

other within a heterogeneous Weibull model. However, even 

though the conditional score tests, suggested in Section

4.4, are based on the restricted joint null, each score is
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purged of the correlation with the other relevant score. 

Therefore, the conditional score tests derived this way may 

contain more information regarding the specific source of 

misspecification than the standard separate tests. These 

conditional tests can be used to locate the exact source of 

misspecification using the Multiple Comparison Procedure . 12

The second variant of the conditional score tests (C (at) ) is 

especially useful when it is hard to obtain maximum 

likelihood estimates of some nuisance parameters. Tests can 

easily be implemented using any inefficient but consistent 

estimates of the parameters rather than some hypothesised 

values of the nuisance parameters which may be incorrect. 

Based on the preliminary outcome of these tests, applied 

researchers can determine if it is worthwhile to continue 

and estimate the model with maximum likelihood methods which 

ensure efficiency. This procedure can be extended to test 

for heterogeneity in functional forms more general than the 

Weibull distribution. Moreover, an analogous technique can 

be used to test for duration dependence by using a 

preliminary estimate of the heterogeneity parameter from a 

least squares regression. Note that this can be achieved 

without parameterising the heterogeneity distribution.

12 see Savin (1980,1984) for a survey of Multiple Comparison 
Procedures.
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TABLE 4 . 1
Parameter Combinations Used in Sampling Experiments

Model a 2 a Model a 2 a

1 0 1 . 0 7 0 . 6 1.30

2 0 0.75 8 0 . 6 1.45
3 0 1.30 9 0  . 8 1 . 0
4 0 1.45 1 0 0  . 8 0.75
5 0 . 6 1 . 0 1 1 0 . 8 1.30

6 0  . 6 0 . 75 1 2 0 . 8 1.45

TABLE 4.2
Percentage Rejections at a Significance Level for Model 1

N = 50 N = 100 N = 200 N = 500

1 0 0 a 10, 5, 1 10, 5, 1 10, 5, 1 10, 5, 1

LMh 6  . 0 , 2 . 2 , 1. 4 6 .8 ,2.4,1.4 7 . 2 , 3 . 8 , 1. 0 9 . 0,3.0, 1. 4

LMd 12.2,5.6,1.2 9 . 0,4. 6 ,1.2 9.4,5.0,2.6 9. 6 ,4.4,1.6

LMhd 6 .8 ,3.4,1 . 0 7 . 2 , 4 . 8 , 1. 0 8 .2 ,4.4,1 . 2 8 .0 ,3.4,0 . 8

l m JT (©) 5.0,3.2,1.0 5. 8 ,3.4,1.0 7.2,3.0,1.2 8 . 2 , 2  . 6  , 1 . 2

LM? (0 ) 8 . 8  , 4 . 2 , 2 . 0 9.6 ,5.0,2.0 9 . 2 , 4 . 2 , 1 . 8 9.4 , 5.2,1.2

LMhc(en) 11.2,8.4,6.6 11.6,7.8,4.2 9 . 0,7.0,4 . 0 8 .8 ,5.7 , 3 . 4
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TABLE 3
Percentage Rejections of H0 at 5% Significance Level

For Models 2-4, N=200

(O’ = 0)

Model # 2 3 4

a = 0.75 1.30 1.45

LM, 97 . 4 95.0 1 0 0

LMd 99 . 8 99 . 6 1 0 0

LMhd 99 . 8 98 . 2 1 0 0

LMhC (9) 39. 6 0 . 0 0 . 0

LMj (0 ) 79 . 4 8 8 . 8 1 0 0

LMhC(0n) 8 . 6 8  . 8 6  . 8
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TABLE 4.4
Percentage Rejections of H0 at 5% Significance Level

For Models 5-8, N=200

(a* = 0 . 6 )

Model # 5 6 7 8

a = 1 . 0 0.75 1. 30 1.45

LMh 99 . 8 1 0 0  . 0 31.0 1 2  . 0

LMd 99 . 8 1 0 0 . 0 5 . 4 62 . 2

LMhd 99 . 6 1 0 0 . 0 45.6 77 . 6

LMhC (9) 81.6 96 . 2 52 . 2 36 . 2

LMj (0 ) 42.2 81.0 46.6 87 . 8

LMhc<en) 74 . 8 73.8 78. 4 78 . 8
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TABLE 4.5
Percentage Rejections of H0 at 5% Significance Level

For Models 9-12, N=200

<ff* = 0.0)

Model # 9 

a = 1 . 0

1 0

0.75

1 1  

1. 30

1 2

1.45

LMh 1 0 0 . 0 1 0 0  . 0 81.4 47 . 4

LMd 1 0 0 . 0 1 0 0  . 0 36 . 6 15. 2

LMh* 1 0 0  . 0 1 0 0  . 0 84 . 8 83.6

LM? (0 ) 97 . 8 99.6 87 . 6 77 . 8

LMd (Q) 76.2 93 . 0 74.2 87 . 2

LM^(0 n) 93.6 94 . 2 92 . 8 93 . 6
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CHAPTER 5

TESTS FOR UNOBSERVED HETEROGENEITY IN THE PRESENCE 
OF CENSORED OBSERVATIONS

5.1 introduction
A peculiar feature of duration models is that data on 

durations are seldom complete. It is common for some 

observations to be censored, typically right censored. 

Information from the censored observations can be extracted 

for estimation using standard maximum likelihood 

techniques.1 However, the effect of censored data on the 

performance of diagnostic tests is not very clear. Even 

though regression models with censored data may be 

especially sensitive to specification errors,2 little is 

known about the effectiveness of the testing procedures in 

the presence of various types and degrees of censoring. In 

this chapter, the effect of various types of censoring on 

different versions of the score test for neglected 

heterogeneity is examined. A Monte Carlo analysis is made 

of the consequences of various types of censoring on 

different versions of the test for the Weibull and 

exponential models.

1 see, for example, Lawless (1982).

2 Horowitz and Neumann (1989), using Kennan's strike data, 
show that the standard diagnostics may lead to erroneous 
conclusions, when data are censored.
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In order to implement a score test of heterogeneity, the 

information matrix, under the null hypothesis, has to be 

evaluated. The theoretical information matrix can be 

computed when the data consist of complete observations.

With censored observations, such a matrix cannot be found 

without additional information regarding the censoring 

mechanism. It is common to have censored observations due 

to finite observation periods. Individuals are observed 

over fixed time periods and some individual durations may 

not have ended when the finite observation period ends. Any 

indidvidual duration will be known exactly only if it is 

less than some pre-specified value. This observation 

process results in what is known as Type-1 censored data.

In this chapter, a test for heterogeneity that is based on 

the theoretical information matrix is derived for Type-1 

censored data. For the Weibull model, the above test 

involves evaluating some expressions numerically.

Sometimes data are censored for reasons other than finite 

observation periods. One may just lose an observation after 

observing it to a particular point resulting in data that 

are not Type-1 censored. The information matrix with these 

censored data cannot be determined without making further 

papametric restrictions on the censoring mechanism. When 

observations are censored randomly, involving no length 

biased censoring, a method is suggested where only the
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uncensored observations are used to implement the test of 

heterogeneity. This method consists of estimating the 

parameters of the model using all observations. These 

consistent and efficient estimates are then used to evaluate 

scores consisting only of complete observations.

Alternatively, heterogeneity tests can be based on the 

observed information matrix. Efron and Hinkley (1978), 

generally, recommend the use of the observed information 

matrix to implement specification tests as it is closer to 

the data than the corresponding, expected (theoretical), 

information matrix. Two obvious candidates for this matrix 

are the sample hessian of the log-likelihood function and 

the outer product of the sample scores. In this chapter it 

is found that in finite samples, the performance of tests 

based on the observed information matrix is case sensitive. 

The information matrix based on the sample hessian is not 

always positive definite, implying that the test is 

sometimes meaningless owing to sampling fluctuations. The 

following Monte Carlo analyses reflect this problem for some 

experiments. Tests based on the outer product of the sample 

scores are easy to implement but the nominal size of these 

tests is different from the actual size. For some data 

generating processes, the number of times the test is 

rejected under the null is found to be more than the chosen
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significance level.3 Finally, Monte Carlo analyses are also 

used to study the performance of the test based on Kiefer's 

method for approximating the information matrix.

The rest of the chapter is organised as follows. In Section 

5.2, different approximations of the density functions that 

can be used to implement the score test of heterogeneity are 

specified. In Section 5.3, the test is derived that is 

based on the uncensored data. Different versions of the 

test are given, depending on the choice of estimate for the 

information matrix. The test statistics, based on the 

theoretical information matrix, for all approximations of 

the density function given in Section 5.2, are shown to be 

algebraically equivalent. Section 5.4 contains a discussion 

of different ways of implementing the test when some 

observations are censored. A distinction is made between 

Type-1 censored data and totally uninformative and randomly 

censored data. For each type of data, tests are derived 

that are based on the theoretical information matrix. Monte 

Carlo analyses of all versions of the test, including the 

ones based on the observed information matrix, are presented 

in Section 5.5. Section 5.6 contains the conclusion.

3 The size problem of tests based on the outer product of the 
sample scores is also reported by Davidson and MacKinnon 
(1983) in their Monte-Carlo analysis with linear regression 
models.
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S .2 Background
Typically, in duration models, the data available to an 

econometrician are on the variables t( , X̂  , and C;, 

where i = 1 N. C ( is an indicator variable, such that:

=

1 if a spell is complete 
0 if a spell is right censored,

t̂  = min (Ti, L() and c( = 1 if T, < L(. (5.2.1)

The Tj 1 s are the actual durations and the L1 1 s are the 

censoring times that may not be available for all 

individuals in the sample. The joint probability density 

function of (t,C), given X, is:

f(t,C) = f(t)c SfL)1̂  (5.2.2)

where f(t) is the density function and S(t) is the survivor 

function of T. Given the assumption that the observations 

on the pairs (t^C,) are independent, the log likelihood 

function is:

N
L = E [Cf log f f t^XJ + (1 - CJ log Sft^-X,)]. (5.2.3)

i=l

Once the density and survivor functions of any parametric 

model are specified, the likelihood function can easily be 

maximised using standard techniques. The density function 

of a Weibull model, conditional on regressors, is given by
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f(t|X) = /lat^’exp (-Mt“) where n = exp(Xfl). If neglected 

heterogeneity is suspected in the sample, it can be 

represented by writing n = exp(X8 + U) = Vexp(Xft) where V = 

exp(U) is the heterogeneity term. As V (or U) is not 

observable, the density of a duration conditional only on X 

is taken as: f(t|x) = Ev[f(tjX,V)] where the expectation is 

taken with respect to the distribution of V (or U ) .

Following Lancaster (1985), a Taylor series expansion of the 

conditional duration distribution, f(t|x,V), around the unit 

mean of the heterogeneity term, V, can be used to derive the 

following:4

f(t|X) = [Mata'1exp (-e) ] (1 + a 2 (e1 - 2e)] (5.2.4)
2

where a 1 is the variance of V and e = /it“ is the integrated 

hazard function that is a generalised error in the sense of 

Cox and Snell (1968).

Kiefer (1984) and Burdett et al (1985) derive a similar 

expression using a Taylor Series expansion around the zero 

mean of the heterogeneity term U.5 The corresponding 

density function is approximated as:

4 see Chapter 2 for details

5 Note that assuming E(U) = 0 is not equivalent to assuming 
E (V) = 1.
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f(t|X) = [MC(tc''1exp(-e) ] [ 1 + oJ_ (1 - 3 e + e2 ) ]
2

where a 1 is the variance of U.

(5.2.5)

Another approximation of the density function, given by 

Kiefer (1985) and Sharma (1989), is based on the Laguerre 

alternatives. Here the density function is specified as:

1f (11 X) = [Hat* ’exp(-e) ] [1 + 2 5^(6)]. (5.2.6)

Lj(e) is the j 1th Laguerre polynomial in e(t) where, for all 

j , k = 0, 1, 2 .... etc.,

' Lj-feft)) L,, (€ (t) ) f (11 X) dt = 0 if j ¥  k
1 if j = k

(5.2.7)

The family of alternatives considered here is sufficiently 

flexible and has power against many alternative models.6 

Testing for a Weibull specification reduces to testing for 

= 0, for all j. Sharma (1989) points out that testing 

for &2 = 0 can be interpreted as a test for heterogeneity.

For the sake of exposition, the likelihood function using

(5.2.3), with the density function approximation given by

(5.2.4), can be written as:

see Kiefer (1985) or Sharma (1989) for details on Laguerre 
approximations for the exponential and Weibull models 
respectively.
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[L = £ C[ln a + (a-l)ln(t) + In + In (1 + aj_ (e2 - 2e))]

- € + (1—C ) ln(l + a i e1 )
2 —

(5.2.8)

where C is an indicator variable (defined above) that equals 

1 if a duration is complete and zero if it is right 

censored. The test of heterogeneity comprises the following 

null hypothesis:

Ho: a 2 =0. (5.2.9)

Let 9 = (81 ' 92') 1 where:

9, ' = a 2 and 82' = (fio B, ' a).

Under the standard regularity conditions,7

N - 1 / 2 S 1 (9) 
S 2 (0)

- n[0, l 1(9)]
N

(5.2.10)

where 1(9) = -E[d2L / d8d9'] denote the theoretical 

information matrix, partitioned conformably as:

1 (0 ) = ■11

■21

;12
■22

(5.2.11)

7 see Breusch and Pagan (1980), Engle (1982, 1984), Bera and 
McKenzie (1986) and Godfrey (1988) etc.
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Let s(e0) and I (0O) denote the score vector and the 

information matrix respectively, evaluated under the null 

hypothesis. The score, s,(©0), computed for the above 

hypothesis is:

<SL 
So1

= 1 E(€2 - 2Cc) = (0Q) • (5.2.12)
H o 2

Similarly, the score derived from the density given by

(5.2.5) is:

6 L
So2

= 1 Z(eJ - 2Ce + C - £). (5.2.13)
Ho 2

Also, the score w.r.t S2, using the Laguerre polynomial 

approximation given by (5.2.6), can be shown to be:

SL
<5<S,

= 1 Z(e2 - 2Ce + 2C - 26). (5.2.14)
H0 2

The last two expressions, (5.2.13) and (5.2.14), are 

identical to the corresponding expressions derived by Kiefer 

(1985) and Sharma (1989) but are written in a much simpler 

form. The form derived here avoids unnecessary expressions 

involving incomplete gamma functions. Moreover, in order to 

maximise the likelihood function, <SL/<Sfl0 is set equal to 

zero. This implies that at the maximum likelihood

estimates, E(C - e) = 0 .  Therefore, the sample scores, 

(5.2.12) - (5.2.14), are identical even though they are 

derived under three different approximations.
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The score test of heterogeneity is given by:

LM = s/ (eo)I11(0o)Sl(0o) (5.2.15)

where (-) denotes that the quantities have been evaluated at 

the restricted maximum likelihood estimates of the parameter 

vector, 9, and 1 - [*11 “ -*-12 ̂  ̂ I2ll is the partitioned 
inverse of 1(9). In order to implement the score test, I11 
has to be evaluated. This partitioned inverse can easily be 

obtained once the information matrix, I(9o) , is estimated.8

8 see Bera and McKenzie (1986) for a discussion of alternative 
ways of estimating the information matrix.
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5.3 Test of Heterogeneity With Uncensored Observations
When all the observations in the sample are complete, the 

theoretical information matrix can be used to implement the 

test. For a Weibull model (see Chapter 3),

where * are deduced by symmetry, m = 0(2)-B0, q = 1/0' (1) 

and N is the sample size. 0(.) and 0'(.) are the digamma 

and trigamma functions respectively.

The other elements of the information matrix depend on the 

choice of the approximation used to specify the likelihood 

function. For instance, when the likelihood function is 

based on (5.2.4), the elements can be derived as:

1., - 2 and I12 - [-1 0 -(1/a)(m+1)]. (5.3.2)
N N

With (5.2.5), they are:

1., = 5/4 and I12 = [-1/2 0 - (l/2a) (m+2) ] . (5.3.3)
N N

If (5.2.6) is used, they are (see Sharma (1989)):

1., = 1 and l12 = [0 0 -1/a]. (5.3.4)
N N

1+m2 q -mfi, ' q -amq

fl'VfljB, ' q aB,q (5.3.1)
*
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As shown in Section 2, even though the three tests are based 

on different approximations, s1(0o) derived from the three 

methods is identical. Also, even though the components of 

the three information matrices are different, the 

partitioned inverse, I11, derived from all three 

approximations is identical and is equal to l/N(l-q).9 For 

the exponential model I11 equals 1/N. Lancaster (1985) uses 

this expression to derive a test of heterogeneity. Such a 

test can easily be implemented when there are no censored 

observations in the given sample.

An interesting observation regarding the heterogeneity test 

for the exponential and Weibull specifications concerns the 

non-centrality parameter of the test. Given H0: a 2=0, let

the sequence of alternative hypotheses be given by Hg: a 1 =

f/ N. Then, asymptotically, the test for heterogeneity is 

distributed as X2 (l,n)10, where the non-centrality parameter 

n = (1/N)r2/I11. Therefore, the non-centrality parameter 

for an exponential specification is r2 and for a Weibull 

specification it is (l-q)r2 = .39r2 . Thus, for given sample

size and departure from the null, the power of the

heterogeneity test for an exponential specification is 

greater than that of a Weibull.

9 Godfrey (1988) refers to the models based on such 
alternative approximations as locally equivalent alternatives 
(LEAs) with respect to the null hypothesis.

10 see Cox and Hinkley (1974) and Chapter 4 of this thesis.
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Burdett et a l . (1985), following the test proposed by Kiefer

(1984,1985), use sample information to calculate the 

variance of the 3,(0)- For example, let the mean score 

(1/N) (dL/dcr2 ) , evaluated at a 2=0, be S = (1/N) Ss(. The 

suggested variance of the mean score is (1/N2) ^(Sj-s^2 

where sm is the sample mean of s. As the information 

matrix, using a Weibull specification, is not block 

diagonal, the covariance between the elements of the score 

vector, dL/dcr2 and dL/d© is ignored where e = (a ft') 

Therefore, the proposed variance of the test statistic is 

over-estimated and results in the under-rejection of the 

null hypothesis of no heterogeneity. Kiefer's (1985) claim 

that such a testing procedure is conservative, in the sense 

that it leads to too many rejections, cannot be true. 

Moreover, Kiefer recommends that a one-tailed test be used 

as it is based on testing for a2=0 against a2>0. This 

customized one-tailed test of heterogeneity can be justified 

when the sole possible source of misspecification is 

neglected heterogeneity, which in any given data may not be 

true.11 The test should be considered a general 

misspecification test rather than being directed at testing 

for heterogeneity per se, hence, a two-tailed test should be

11 see Jaggia and Trivedi (1989) and Jaggia (1990).
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used.12

Furthermore, the performance of the Kiefer-type test is 

affected by the choice of the approximation of the 

likelihood function. As the correlation between the scores 

is ignored in his estimation of the variance, the test based 

on some approximations will be affected less than the others 

depending on the correlation of 5,(9) with s2(9). In 

particular, from (5.3.4), it is seen that there is no 

correlation between s, and s2 when the test for an 

exponential specification is based on the Laguerre 

polynomial approximation, and thus Kiefer's test is 

justified.13 This, however, is not true when the same 

approach is used for the Kiefer’s Taylor series expansion, 

as seen from (5.3.3). Thus, Kiefer's test, (Kiefer (1984), 

cannot be justified. Moreover, even if the information 

matrix is block diagonal, the result is based on the 

asymptotic distribution of the scores, which may not hold in 

finite samples. For a Weibull model, information matrix is 

not block-diagonal, even with the Laguerre polynomial 

approximation of the likelihood function.

For a more satisfactory test, one has to allow for the

12 Jensen (1987) makes a similar comment regarding the use of 
the one-tailed test in an exponential model.

13 Pagan and Vella (1989) and Sharma (1989) justify the use of 
Kiefer's procedure to test for an exponential specification.
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possible correlation of s,,(9) with sz(9) even though the 

sample information is used to derive the observed 

information matrix. Using the Information Matrix equality, 

one can use either the sample hessian of the log-1ikelihood 

function, Z(<S3L /69691), or simply the outer product of the 

sample scores, D'D, as an estimate of 1(9). Here D is a 

(Nxk) matrix whose typical (i ,j )th element is dLi/d9j, where 

(i=l, 2 ...N) and 91....9k represent the k parameters of the 

model estimated under the null. When D'D is used, the score 

test can be easily implemented by running an artificial 

regression of a vector of ones on D. The test statistic is 

calculated as NR! where RJ is the uncentred coefficient of 

determination derived from this artificial regression. This 

implementable score test is identical to the White's 

information matrix test as suggested by Lancaster and 

Chesher (1985). Even though this procedure has the merit of 

being easy to implement, tests based on the outer product of 

the sample scores approximation of the information matrix 

are reported to have poor small sample properties (see 

Davidson and MacKinnon (1983)).
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5.4 Test of Heterogeneity With Censored Observations
When the data consist of complete as well as censored 

observations, the information matrix given above cannot be 

used to implement the score test of heterogeneity. Let 

= StL/SOSQ' represent the sample hessian of the log-

likelihood function. Consequently, 1(0) is minus the

expected value of Hqq where the expectation is taken with 

respect to the joint distribution of t and C conditional on 

the set of regressors X. Moreover, as C is a discrete

random variable that assumes only 2 values, 1 and 0, the

theoretical information matrix can be derived as:

-1(6) = E(He8|C=l)P(C=l) + E (HgQ | C=0 ) P (C=0) (5.4.1)

where E(Hee|c=l) = J f(tjc=l)dt and:

E (1^10=0) is simply evaluated at C=0 and t=L.

In order to evaluate these expressions some additional 

information regarding the censoring mechanism may be needed. 

For instance, the conditional duration distribution, 

f(t|c=l), can be specified only if some extra information on 

the censoring mechanism is available.

5.4.1 When Data are Tvpe-1 Censored

In practice, censored data commonly occur because of finite 

observation periods. Some events of interest may not be 

complete when the data acquisition period ends. In such
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situations, data are said to be Type-1 censored. An 

individual duration is known only if it is less than some 

pre-determined value. As t, = minfT^Lj), the actual 

duration is observed only if T ; < L- where the Li * s are pre­

determined. Notice that L, does not have to be the same for 

all individuals as all individual durations may not start on 

the same date, even though they are all observed until a 

common pre-determined date. In such a situation, L1- will be 

different for various individuals and hence, is random. If 

the Lj 's are known in advance for all individuals, the 

information matrix, (5.4.1), needed for the heterogeneity 

test, can be easily computed. The following result is used 

to derive this information matrix:

Also, P(C=0) = P(T>L) = 1-P(C=1) = exp(-ML) for the 

exponential model and exp(-/iiL“) for the Weibull model.

Notice that such a simplification may not be of much use if 

censoring times, L's, are not available for all individuals. 

This point has special relevance when data are not Type-1 

censored and the L*s corresponding to complete durations are 

not available.

E(Hee|C=l) = r Hqq f (11 C=1) dt = r f (1 1 T<L) dt
L

1___  f f(t)dt.
P(T<L)

0
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For an exponential model, the partitioned inverse component 

needed to compute the test is (see Appendix 5a):

I11 = [6,, - (612) V<S22]'1. (5.4.2)

where, using s = /iL, the following are derived as:

= Z[2 - exp(-s)(s1+2s+2)],

<S12 = Z[ (exp(-s) (1 + s) - 1] and 

622 = Z [1-exp(-s)].

Note that if the censoring times, L's, go to infinity, 

implying no censoring, exp(-s) = 0. Hence, I11 = 1/N, as is 

derived for the case of all complete observations. Also, 

the information matrix is a function of the unknown 

parameters along with the L's. Thus, the performance of the 

test will also depend on the parameters of the model. This 

is unlike the case in which the test is based on all 

complete observations and the partioned inverse, calculated 

from the information matrix, is free of unknown parameters.

Similarly, the information matrix for the Weibull model can 

be derived in order to implement the score test for 

neglected heterogeneity. However, some components of the 

information matrix for the Weibull model involve incomplete 

digamma and trigamma functions and have to be evaluated 

numerically (see Appendix 5a) .
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5.4.2 When Data are not Tvue-1 Censored

If censoring is not of Type-1, the components of the

information matrix cannot be evaluated as above. In such a 

situation, the observed information matrix, in principle, 

can be taken to implement the test of heterogeneity. 

Alternatively, a test is suggested that uses the theoretical 

information matrix based on uncensored observations only.

All observations are used to find consistent and efficient 

estimates of the parameters but these estimates are used to 

evaluate scores comprising only complete observations. As 

shown below, it is feasible to obtain a good estimate of the

theoretical information matrix corresponding to complete

observations only.

Furthermore, since parameter estimates are derived from 

censored data, the following correction has to be made 

because sample scores from purely complete observations may 

not be zero. For notational convenience, let L represent 

the log-likelihood function derived from complete as well as 

censored observations and Lc indicate the function based on 

complete observations only. Also, let the notation (-) 

denote maximum-1ikelihood estimates derived from all 

observations that are obtained by maximising L. Therefore, 

for the likelihood function based only on complete

observations, s2(0) = 6L,C/ 6Q2 | © 2 = ® 2  Inay n°t equal zero. The 

standard normality results of s y (90) = 6L/601|9=9O, given by
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(5.2.10) , hold even when dL/d©, is evaluated at

0, where s2(©) = <SL/682 is set equal to zero to get 8. Once

s, (0) is evaluated, with s2(0) = 0, the results of (5.2.10)

can be used to compute the score test. However, as

6LC/6©2|©=0 may not equal zero, the standard normality 

result of SIjC/ S Q : | 8=0O cannot be used directly. One way to 

deal with the problem is to use Lc for estimation as well as 

testing. The relevant score, 6LC/(S01, can be evaluated at ec 

where 5Lc/02 is set equal to zero to get 0C. One can discard 

all censored observations and treat the set of remaining 

observations as the relevant sample. This approach will not 

only result in inefficient estimates with which to evaluate 

the relevant scores, it will also introduce a sample 

selection bias that may lead to inconsistent estimates.

If all observations are to be used for estimation,

6L,C/S&^ 16=9° can be approximated, that corrects for the 

sample value of s2(0) being non-zero at the estimated 0.

Expanding 6lf/6e,\e=e around dLc/01|8=8c, using the Taylor 

Series expansion,14 one gets:

6LC/ 5 8 |8 = 5LC/60j0=8C+ L/6060' (8 - 8°) .

14 Engle (1984) uses a Taylor's series expansion to exposit 
Neyman's (1959) C-alpha test. See also Chapter 4 of this 
thesis for a general discussion of the C-alpha type tests.
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Using the fact that 6^ = ©, = © l0 and 6LC/<S©2192=Q<2 = *-he
following can be derived:

(5.4.3)

Using the above, the suggested test statistic is computed 

a s :

The test specified above is algebraically identical to 

Neyman’s (1959) C-alpha test even though the motivation for 

this test is quite different. The C-alpha test is used when 

it is computationally difficult to estimate the model using 

maximum likelihood methods. Here, the use of maximum 

likelihood estimates is stressed in order to obtain 

consistent and efficient estimates for the evaluation of the 

scores derived from complete observations. In both cases, 

however, the correction is made because s2(0) is not 

constrained to be equal to zero at the estimated G.

In order to implement the above mentioned adjusted test, the 

components of the information matrix have to evaluated. If 

the censored observations are such that they could have been 

censored randomly at any point during their potential 

duration, the information matrix can be found by ignoring
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the fact that only complete observations are being 

considered. In order to derive the theoretical information 

matrix one has to compute the expectation of where the 

expectation is taken with respect to the joint distribution 

of T and C. Here, it is assumed that the random variable C 

contains no information regarding the parameters of the 

model and thus can be thought of as being independent of T. 

Therefore, the information matrix with complete observations 

can be evaluated as Et (H^) P(C=1). The first component is 

evaluated with respect to the marginal distribution of T and 

P (C=1) is estimated using the proportion of complete 

observations in the sample. If longer durations have a 

higher probability of being censored than shorter ones, then 

such an approach cannot be justified. For example, with 

Type-1 censored data, the fact that an observation is 

complete implies that it is smaller than the length of the 

observation period. In such a situation one cannot assume 

that the distribution of T is independent of C.

To implement the above adjusted score test of heterogeneity, 

the information matrix for an exponential model is:

In = 2Np, I12 = [-Np 0] and:

I22 =
Np

0

0

Npn
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where p is the sample proportion of complete observations.

Using (5.4.4), the adjusted score test can be computed as:

2LM = 1a Np
(5.4.5)

where s21 = Z[1 - jit] is the sample score w.r.t. the 

intercept term, B0.

Similarly, the heterogeneity test for the Weibull model is:

(î N'p |IS1(§) ' tI22(5>j'ls2(§>T (5'4'6)LM = a

where I12(I22) 1 = [mq— 1 -/^q -aq] and:

6L/660 Z[1 - Jita ]

s2(0c) = 6L/5B, = S[(l - Jita)X]

S L /6a Z [ 1/a + (1 - jit“) log (t) ]
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5.5 Monte Carlo Experiments
The Monte Carlo experiments presented below are used to 

compare the performance of the various versions of a test 

for heterogeneity described above for different types of 

censoring. These tests are compared using exponential and 

Weibull models. Two sets of experiments are conducted. 

Firstly, random and uninformative censoring, where C is 

independent of T, is considered. The performance of five 

test statistics is compared. The adjusted test, LMa, is 

based on complete observations when all observations are 

used for estimation. The second and third tests are based 

on the observed information matrix. LMs is based on the 

outer product of the sample scores and LMh is based on the 

sample hessian of the log-1ikelihood function. The fourth 

test statistic, LMk1 , is Kiefer's test, based on the density 

approximation given in (5.2.5), and is one-tailed as 

suggested by Kiefer. The fifth statistic, LMk2, is the same 

as LMm differing only in that a two tailed test is 

implemented.

In the second set of experiments, Type-1 censored data are 

considered. Both fixed and random censoring times are 

studied. Random censoring refers to a situation where each 

individual observation is associated with a different but 

pre-determined censoring time, Li. For the exponential 

model, LMt is a test based on the theoretical information
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matrix. This test is not implemented for the Weibull model 

where it involves evaluating incomplete digamma and trigamma 

functions numerically. Further, performance of tests based 

on the observed information matrix, including Kiefer's test, 

are examined for both models.

5.5.1 Design of Sampling Experiments

The size and power properties of the test statistics, 

mentioned above, are evaluated on the basis of different 

data generating processes. The heterogeneity term is 

multiplicative, and is log-normal. A random draw from the 

NfOjU1) distribution is made for the 'U' representation of 

the heterogeneity term. Once a draw corresponding to a 

particular value of a1 is made, the vector of the 

heterogeneity term is held fixed for all replications and 

types of censoring. This practice reduces sample 

variability between replications and between experiments. 

Throughout the simulation experiments, the sample size taken 

is 200. The parameters (fl0, 6,) are set at (-5.0, 1.0).

The variable X1 is taken as a random draw from a uniform 

[0,1] distribution and is held fixed for all experiments.

5.5.2 Experiment 1

In the first set of experiments, the censoring mechanism is 

assumed to be completely non-informative. To incorporate 

heterogeneity, the value of a 2 is taken as 0.6 for the
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exponential model and 0.8 for the Weibull model. To 

generate censored data in this set of experiments, the pre­

selected observations on durations are multiplied by a 

vector drawn from a uniformly distributed random variable 

between [0,1]. This process of generating censored 

observations implies that censoring could have occurred at 

any point during the duration of a spell. For example, if 

the value of a uniformly distributed variable is 1/2, it 

implies that duration is censored at exactly half of its 

actual potential value. The tests are performed at 0%, 20% 

and 4 0% censoring denoting no, moderate and heavy censoring 

respectively. For both sets of experiments, tests are 

replicated three hundred times. To evaluate the size of the 

tests, allowance has to be made for the Monte Carlo error. 

For the 300 replications, the standard error of the 5% level 

of significance is 0.0126. Therefore, a 95 percent 

confidence interval around a 5% level of significance would 

range between 0.025 and 0.075.15

Results of Experiment 1

The percentage rejections of the null hypothesis at a 5% 

nominal level of significance for the exponential model are 

presented in Tables 5.1 and 5.2. Table 5.1 contains results 

of the tests when the data generating process conforms to

15 The confidence interval is constructed using the normal 
approximation of the binomial distribution.
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the null hypothesis. Table 5.2 compares the power when there 

is heterogeneity in the sample. Analogously, Tables 5.3 and 

5.4 are used to compare the size and power of the tests 

respectively, for the Weibull model.

From Table 5.1 and Table 5.3, it is seen that the adjusted 

score test, LMa, has good size properties. The observed 

number of rejections fall in the above mentioned confidence 

interval for all degrees of censoring for both exponential 

and Weibull models. For LMS, the proportion of rejections 

under the null are more than the nominal level. The 

performance of this test gets worse as the proportion of 

censored observations increases. The performance of the 

test based on the sample hessian, LMh, cannot be evaluated 

accurately as it is found that the estimated information 

matrix is not always non-negative definite. Kiefer's test 

under-rejects using a one-tailed test, and over-rejects when 

a two-tailed test is used for the exponential model. When 

the underlying model is Weibull, Kiefer's test grossly 

under-rejects. As mentioned earlier, because the 

correlation of s.,(e) with s2(0) is totally ignored, the 

variance of 5,(9) is overestimated resulting in under­

rejection, especially in Weibull models.

From Tables 5.2 and 5.4 we see that the tests based on the 

observed information matrix are not as powerful as the LMa.
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Even though we drop some observations to implement this 

test, the effect of reducing the non-centrality parameter of 

the test, due to reduction in sample size, is less severe 

than the effect of inaccurately estimating the information 

matrix. The number of rejections of LMs may seem comparable 

to that of LMa, but a comparison of the power of the two 

tests cannot be made as the size of the tests is different. 

On a size-corrected basis, the power of LMs would be less 

than that of LM8.

5.5.3 Experiment 2

In the second set of experiments, Type-1 censored data are 

generated. To artificially create Type-1 censored data, t = 

min(T,L) is taken, where t is the observed duration. 

Different values for the predetermined L's are used to allow 

for various degrees of censoring. For the exponential 

model, the values taken for the fixed censoring times are 

100 and 150 respectively. With the given parameter values 

in this Monte Carlo set up, about 20 and 35 percent 

censoring is generated under the null. To allow for random 

censoring times, L = 120 + 20R is used where R is uniformly 

distributed on [0,1]. This method results in about 25 

percent censored observations under the null. When 

heterogeneity is introduced to the sample, the number of 

censored observations increases by about 5 percent. The 

value of a 1 is still set at 0.6 for the exponential model.
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The performance of the tests LMS, LMh, and LMk2 and LMt,
which is based on the theoretical information matrix, is 

compared. For the Weibull model the two fixed values used 

for L are 12 and 10 which generate about 2 5 and 3 5 censored 

observations respectively. For random censoring times, L = 

10 + 2R is implemented. As with the exponential model, the 

number of censored observations increase by about 5 percent 

when heterogeneity is introduced. The value for the 

heterogeneity variance, a 2 , is 2.0.

Results of Experiment 2

The tests with Type-1 censored data are also replicated 

three hundred times. For the exponential model, the number 

of rejections of all test statistics falls within the 

confidence interval, constructed above, for all degrees of 

Type-1 censored data (Table 5.5). From Table 5.6, it is 

found that all tests seem to have comparable power though 

the tests based on the observed information matrix 

outperform the ones based on the theoretical information 

matrix for many experiments. However, the number of 

rejections, for a given value of a 2 = .6, are a great deal 

less than the case when there are no censored observations 

(Table 5.1). This decrease in power can be explained by the 

non-centrality parameter of the test statistic. When all 

observations are complete, In = N and is independent of any 

nuisance parameter. For local departures from the null
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hypothesis, a 1 = r/ N, the non-centrality parameter of the 

test is equal to r* . This, however, is not the case when 

there is Type-1 censored data. From (5.4.2), In = [<5n - 

(<S12)2/622] which depends on the parameters and censoring 

times, L. For the given parameter value of 6 = [-5,1]', 

evaluated at the mean X, along with L = 100, the non­

centrality parameter is .06r2 . This value is much smaller 

than the one derived when all observations are complete for 

a given sample size and departure from the null. Therefore, 

the power of the tests is affected by the length of the data 

acquisition period and becomes smaller as the period is 

reduced. Moreover, since the power of the tests also 

depends on the choice of parameter values, a more 

comprehensive monte-carlo analysis is desired.

For the Weibull model, LMt is not computed as it requires 

numerical evaluation of incomplete digamma and trigamma 

functions. From Table 5.7 and 5.8, it is seen that the size 

of LMS and is within the confidence limits mentioned

above. However, the test is almost never rejected with LMk1 

and LMk2 as in the case with random censoring seen above.

When there is heterogeneity in the data, the sample hessian 

used to estimate the information matrix is not constrained 

to be positive definite. Thus, the resulting test statistic 

becomes meaningless sometimes owing to sampling
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fluctuations.16 In this Monte Carlo simulation, the I11 

element is negative for many replications where there is 

heterogeneity in the data making LMj, negative. This 

phenomenon results in a spuriously low number of rejections 

as LMh has to be significantly high to result in the 

rejection of the test. The power of LMS is reasonable 

considering the fact that there is Type-1 censored data. As 

in the exponential model, the non-centrality parameter of 

the test is reduced when data are Type-1 censored thus 

resulting in a decrease of power of the test.

16 A classic example of such a phenomenon is Durbin's h test 
(see Godfrey (1988)).
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5.6 Conclusion
In this chapter, various versions of the test for neglected 

heterogeneity are developed for censored data and are 

analysed using Monte Carlo experiments. Different versions 

of the test basically depend on the choice of estimate for 

the information matrix. When the data are Type-1 censored, 

tests based on the theoretical information matrix are 

developed. This method is an extension of Lancaster's 

(1985) tests based on complete observations. Tests based on 

the outer product of the sample scores perform well with 

Type-1 censored data. These tests actually outperform the 

ones based on the theoretical information matrix for some 

experiments.

When censoring is totally random and uninformative, as with 

the cases considered in this chapter, the tests based on the 

outer product of the sample scores do not perform well. The 

nominal significance of these is found to be greater than 

the real level, especially when the number of censored 

observations is large. An adjusted score testing procedure 

that does not suffer from this limitation and performs well 

for all degrees of censoring is suggested. This test is 

only based on the complete observations in the sample even 

though all observations are used to estimate the parameters 

of the model.
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The Monte Carlo experiments show that tests based on the 

sample hessian of the log-1ikelihood function are not very 

useful. Since the estimated information matrix is not 

constrained to be positive definite it is quite frequently 

non-positive definite, a result that renders tests 

meaningless. Also, the performance of the Kiefer type test 

is found to be especially poor for the Weibull model.

Finally, even though the focus of this chapter has been on 

tests for neglected heterogeneity, the results derived in 

this chapter can be used quite generally. These results can 

be used to test for other types of misspecifications, 

separately or jointly with the test of heterogeneity.
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TABLE 5.1
Percentage Rejections at 5% Level of Significance

For Exponential Models with no Heterogeneity

No Censoring 20% Censoring 40% Censoring

LMa 0.063333 0.030000 0.063333

LMS 0.143333 0.263333 0.390000

LMh 0.130000 0.216667 0.436667

0.006667 0.000000 0.003333

^ 2 0.110000 0.250000 0.383333

TABLE 5.2
Percentage Rejections at 5% Level of Significance 

For Exponential Models with Heterogeneity

No Censoring 20% Censoring 40% Censoring

LMa 1.000000 0.986667 0.983333

LMS 0.980000 0.933333 0.756667

LM, 0.506667 0.420000 0.323333

LMu 0.746667 0.630000 0.486667

LMk2 0.516667 0.386667 0.236667
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TABLE 5.3
Percentage Rejections at 5% Level of Significance

For Weibull Models with no Heterogeneity

No Censoring 20% Censoring 40% Censoring

LM„a 0 . 036667 0.073333 0.076666

LMS 0.093333 0.143333 0.160000

LMh 0 .013333 0.026667 0.023333

“ *ki 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000

TABLE 5.4
Percentage Rejections at 5% Level of Significance 

For Weibull Models with Heterogeneity

No Censoring 20% Censoring 40% Censoring

LM# 0.846667 0.836667 0.750000

LMS 0.843333 0.796667 0.733333

LMj, 0.040000 0 . 060000 0.050000

LMkl 0.000000 0.000000 0.000000

0.000000 0.0000000 0.000000
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TABLE 5.5
Percentage Rejections at 5% Level of Significance

For Exponential Model with no Heterogeneity

L = 150 L = 100 L = 120 + 2 OR

LMt 0.060000 0.040000 0.033333

LMS 0.073333 0.050000 0.050000

LMh 0.073333 0.080000 0.050000

0.033333 0.050000 0.023333

LMkZ 0.056667 0.046667 0.033333

TABLE 5.6
Percentage Rejections at 5% Level of Significance 

For Exponential Model with Heterogeneity

L = 150 L = 100 L = 120 + 20R

LMt 0.676667 0.483333 0.670000

LMS 0.700000 0.533333 0.703333

LM, 0.760000 0.636667 0.793333

LWkl 0.753333 0.593333 0.783333

“ kz 0.663333 0.493333 0.676667
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TABLE 5.7
Percentage Rejections at 5% Level of Significance

For Weibull Model with no Heterogeneity

L = 12 L = 10 L = 10 + 2R

LMS 0.080000 0.053333 0.046667

LMh 0.093333 0. 080000 0.070000

0. 000000 0.000000 0 . 000000

0.003333 0.000000 0.003333

TABLE 5.8
Percentage Rejections at 5% Level of Significance 

For Weibull Model with Heterogeneity

L = 12 L = 10 L = 10 + 2R

LMS 0.673333 0.503333 0.613333

LMh 0 . 273333 0. 163333 0.236667

0.190000 0.060000 0.150000

“ *k2 0.056667 0.016667 0.026667
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Appendix 5a
In order to derive the information matrix when data are 

Type-1 censored, the following results regarding generalised 

errors, e are needed. These results are based on the fact 

that e,under the null, is distributed unit exponentially.

0

(5A.5) and (5A.6) are the incomplete digamma and trigamma 

functions respectively, of order q, that have to be 

evaluated numerically.

s
eexp(-6)dc = 1 - e xp(-s)(1+s). (5A.1)

0

s
(5A.2)

0

s
(5A.3)

0

s
' e^expt-ejdc = 24 - exp (-s) (s4+4s3+12s2+24s+24 ) . (5A.4)

0

s
£q log € exp(-€)de. (5A.5)

0

s
eq (log e)* exp(-e)d e . (5A.6)

Exponential Model

The information matrix, using the likelihood function
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defined in (5.2.8) with a=l, can be derived as:

—E (61 L/6a 1 So* ) = £[(1/4) E(e4 + 4Ce2 - 4Ce3) ]. (5A.7)

Here, using (5.4.1),

E (e4+4Ce2-4Ce3) = E (e4+4e2-4e3 | C=l) P(C=1) + E ( e4 | C=0) P(C=0) 

where P(C=0) = P(T>L) = exp(-ML) = 1-P(C=l) and 

E (e4 | C=0) = (̂ tL) 4 -

Therefore, (A.7)

L

i S[I <f‘+4e2-4e3) f (t) dt + (/iL) 4exp (-̂ .L) ]

1 Z[
4

0

s
(e4+4 e2-4€3) f (e ) de + s4exp(-s)], where s = fi L.

Using (5A.1) to (5A.4), it is further simplified as:

= Su = £[2 - exp(-s) (s2 +2s+2) ] = 111. (5A.8)

Similarly, the other components of the information matrix 

can be found as:

- E ( 6 2 L / So2 6S ' ) = £ [ E ( Ce- € 1 ) X] = £ [ E (Ce-€2 ) E ( X) ]

= (512 0] = I12 (5A.9)

where <S12 = £ [ (exp(-s)(1+s) - 1].

-E(<5J L / 6R 6B ' ) = £[e(X'X)] = £ [ E ( e ) E (X * X) ] = I22
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'22
cS22 n

(5 A .10)

where <S22 = £[ 1-exp(-s) ] .

The expressions, (5A.8) - (5A.10) can be used to compute the

partitioned inverse needed to compute the heterogeneity

test. As I11 = [!„ - I12(I22)-’I21]-1 it is derived as:

I11 = [5,, - (5A.11)

Weibull Model

The above results given for the exponential model can be 

used for the Weibull model with . However, in addition

to these the following has to be derived:

- E (&2 L / S a1 6a) = 1 E[(Ce - e1 ) (log(e) - Xfi)]
a

= 1 Z[60exp(-s) (1+s) - 6o - sJ log(s) exp(-s)
a

s
+ J (e-cJ)log(€)exp(-c) d(e)]. (5A.12)

0

The last expression, from (5A.5), is an incomplete gamma 

function that has to be evaluated numerically. Similarly 

- E { S 2L / S a 2 ) involves evaluating an incomplete trigamma 

function.
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CHAPTER 6

SUMMARY AND CONCLUSION

In this thesis, the consequences of multiple 

misspecifications, concurrently existing in the data, on 

tests for parametric duration models are examined. Most 

specification tests found in the econometrics literature 

have been constructed in such a way as to ascertain the 

validity of only one specification at a time. Such a 

procedure implies making auxiliary assumptions, in addition 

to the assumptions being tested, each time a test is carried 

out. It is argued that such separate tests are not 

generally robust in the presence of other misspecifications, 

and hence can lead to erroneous conclusions.

The problems encountered with the standard separate test can 

be illustrated by the following simple example. Consider an 

exponential model, with the density function given by: f(t)

= /jexp(-/it) where /j = exp(Xfi) . The log-linear form, using y 

= log(t) can be written as: y = -Xfl + W = X9 + W where W has 

an extreme value distribution with variance = 1.6449. If 

there is some unobserved heterogeneity in the model, 

represented by V, then y = X9 + V + W. A test for 

heterogeneity can be constructed that tests for over­

dispersion in the data. The test would detect heterogeneity
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when the sample variance of the error term is significantly 

greater than 1.6449.

Now, consider a situation where the underlying model is not 

exponential but Weibull with the density function given by: 

f(t) = /iat“’1e x p (-/it°) . Here, the log-linear form is given 

by: y = X9/a + W/a, and y = X9/a + W/a + V if there is 

unobserved heterogeneity. If the same test of heterogeneity 

for an exponential model is computed and there is positive 

duration dependence in the sample (a > 1), the effect of the 

variance of V will cancel out with the reduced variance of 

W/a. The test will pick up no misspecification even though 

both duration dependence and neglected heterogeneity exist 

in the sample. The actual positive duration dependence will 

cancel out with the spurious negative duration dependence 

induced by neglected heterogeneity. This heuristic argument 

points out the limitations of separate tests when multiple 

misspecifications exist concurrently. The analysis can be 

extended to situations where the underlying model is more 

general than the Weibull model. For example, the problem of 

separate tests persists when the underlying model is 

generalised gamma, and heterogeneity is tested for in an 

exponential or a Weibull model.

As the joint presence of more than one source of 

misspecification cannot be a priori ruled out, omnibus test
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statistics that have power against several forms of 

misspecification are stressed. In Chapter 3, such tests are 

motivated and developed for exponential and Weibull models. 

Tests based on parametric alternatives are derived within a 

heterogeneous gamma model. Such tests are score tests or 

simply tests of moment restrictions of appropriately defined 

generalised errors. For example, a score test of no 

heterogeneity is equivalent to a test of a second moment 

restriction on e where the integrated hazard, e, is the 

generalised error in the sense of Cox and Snell.

The above tests, based on a specified parametric 

alternative, have a limitation in that they place 

restrictions on the alternative and hence may not have good 

properties when the specified alternative is also incorrect. 

Here, it is suggested that a joint test of all moment 

restrictions of e should be used rather than a test of the 

second moment only. Such a test has the merit of being 

based on an unspecified alternative and thus is not 

restrictive in any way. Given any parametric model, the 

integrated hazard function has a unit exponential 

distribution under the null and hence, if the model is 

correctly specified, its moment restrictions must be 

satisfied. Tests of higher order moment restrictions of e 

are derived using the Newey-Tauchen framework.

An empirical application, using Kennan's strike data, is
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provided as illustration for all the above mentioned tests. 

It is found that when separate tests are implemented, 

results indicate that restrictive exponential and Weibull 

models are adequate. However, when joint tests for 

misspecification are implemented, both exponential and 

Weibull models are found to be inadequate. It is, 

therefore, stressed that the first step in model evaluation 

should always be to implement a joint test as more than one 

source of misspecification may be present in any given 

model. Further, it is shown that erroneous conclusions may 

be reached, as in a number of previous analyses of Kennan's 

strike data, if standard separate tests are implemented.

A known limitation of a joint test is that if the null 

hypothesis is rejected, one still needs information from 

separate tests to indicate the nature of the required 

respecification. In order to have a valid separate test for 

any one misspecification, all auxiliary (nuisance) 

parameters have to be estimated. The maximum-1ikelihood 

estimation of nuisance parameters can sometimes be 

computationally cumbersome. Thus, Neyman's C-alpha type 

tests are motivated and developed in Chapter 4. These tests 

may be based on any root-N consistent estimates of these 

parameters and are asymptotically equivalent to separate 

tests that are based on maximum likelihood estimates. An 

example of such a test for neglected heterogeneity, that is
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based on the consistent estimates using least squares, is 

provided. The Monte Carlo results indicate that such a test 

performs well.

A problem arises when any root-N estimates of nuisance 

parameters are also not available. Here, joint and separate 

tests have to be implemented under the joint null 

hypothesis. Bera and Jarque (1982) deal with a similar 

situation in the context of a classical linear regression 

model. They suggest Multiple Comparison Procedures in order 

to identify different sources of errors when the joint test 

results in the rejection of the null hypothesis. Their 

procedure, however, is aided by the additivity of their 

separate tests, implying that all tests they derive are 

asymptotically independent under the joint null. So, even 

when multiple misspecifications exist, each separate test is 

somewhat informative in carrying out a search for an 

appropriate model.

In the given context, the tests of heterogeneity and 

duration dependence are shown to be correlated with each 

other within a heterogeneous Weibull model. Each separate 

test, therefore, provides no useful information regarding a 

particular misspecification. The conditional score tests 

suggested in this chapter may be used to attain such 

information. Even though the suggested conditional score
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tests are based on the restricted joint null, each score is 

purged of any correlation with the other relevant score. 

Therefore, the conditional score tests derived this way may 

contain more information regarding the specific source of 

misspecification than the standard separate tests. These 

conditional tests can be used to locate the exact source of 

misspecification using the Multiple Comparison Procedure; 

see Savin (1980,1984) for a survey of Multiple Comparison 

Procedures. The Monte Carlo experiments conducted in this 

chapter suggest that conditional separate score tests do in 

fact contain more information than the standard separate 

tests.

All the tests suggested in Chapters 3 and 4 are based on the 

theoretical (expected) information matrix. Such a matrix is 

hard to obtain when there are censored observations in the 

sample. In principle, one may use the observed information 

matrix to implement such tests. Tests based on the observed 

information matrix are shown to perform poorly for many of 

the simulation experiments conducted in Chapter 5.

Using the test of heterogeneity as an example, alternative 

methods are suggested where more information from the null 

hypothesis is used to implement tests in the presence of 

censored observations. Even though the focus of this 

chapter is on tests for neglected heterogeneity, the results
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derived can be used quite generally. These results can be 

used to test for other types of misspecifications separately 

or jointly with the test of heterogeneity.

When the data are Type-1 censored, tests based on the 

theoretical information matrix are developed. This method 

is an extension of Lancaster's (1985) tests based on 

complete observations. With Type-1 censored data, the test 

is shown to depend on the chosen observation period. Using 

the non-null distribution of this test, it is shown that the 

power of tests based on the censored observations is reduced 

if the length of the observation period is decreased. The 

Monte Carlo results exhibit this reduction in power. For 

this type of censoring, tests based on the observed 

information matrix also perform well.

When data are not Type-l censored and censoring is totally 

random and uninformative, the tests based on the observed 

information matrix do not perform well. An adjusted score 

testing procedure that does not suffer from this limitation 

and performs extremely well for all degrees of censoring is 

suggested. This test is only based on the complete 

observations in the sample even though all observations are 

used to estimate the parameters of the model.
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